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Abstract— The design and tuning of bio-inspired muscu-
loskeletal bipedal robots with tendon driven series elastic
actuation (TD-SEA) including biarticular structures is more
complex than for conventional rigid bipedal robots. To achieve
a desired dynamic motion goal additional hardware parameters
(spring coefficients, rest lengths, lever arms) of both, the TD-
SEAs and the biarticular structures, need to be adjusted.
Furthermore, the biarticular structures add correlations over
multiple joints which increase the complexity of tuning of these
parameters. Parameter adaption and tuning is needed to fit
active and passive dynamics of the actuators and the control
system. For the considered class of musculoskeletal bipedal
robots no fully satisfying systematic approach to efficiently
tune all of these parameters has been demonstrated yet.
Conventional approaches for tuning of hardware parameters
in rigid robots are either simulation based or use a hardware-
in-the-loop optimization. This paper presents a new approach
to efficiently optimize these parameters, by combining the
advantages of simulation-in-the-loop and hardware-in-the-loop
optimizations. Grahical interpretation of suitable metrics, like
resulting quality values, are used to interpret the simulation
results in order to efficiently guide the hardware experiments.
By carefully considering the simulation results and adjusting
the sequence of robot experiments based on biomechanical
insights, the required number of hardware experiments can
be significantly reduced. This approach is applied to the mus-
culoskeletal BioBiped2 robot where the hardware parameters of
the elastic actuation of the Gastrocnemius and Soleus structures
are optimized. A comparison with a state-of-the-art hardware-
in-the-loop optimization method demonstrates the efficiency of
the presented approach.

I. INTRODUCTION

Conventionally built bipedal robots are based on rigid
kinematic chains combined with stiff joint actuators which
allow them to perform precise motions. Using established
joint and posture control concepts they achieve stable fast
walking motions and even short flight phases on flat ground
[6]. But to allow for bipedal locomotion in unstructured en-
vironments as seen in humans, robustness against unforeseen
disturbances with respect to the time and place of the ground
contact is more important than precision. Leg kinematics
with rigid actuators are subject to high peak forces on
unplanned ground contacts which can lead to damages in the
actuators. Also, the stiff nature of the kinematic chain does
not allow to store and release energy between multiple steps
to achieve human-like performance in running or jumping.

In biological legged systems such performance is achieved
through elasticity in the actuation [14]. This can be transfered
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Fig. 1: (a) BioBiped2 robot used in the example application in Sec. II
(6 degrees of freedom, mass: 11.5 kg, hip height; 0.7 m). (b) Kinematic
structure highlighting the relevant active TD-SEAs with motor and spring
(Soleus (SOL), Vastus (VAS)) and passive (Gastrocnemius (GAS)) struc-
tures. (c) Definition of the GAS rest angle α and the GAS attachment point
numeration 1 to 6.

to mechanical systems by using series elastic actuators,
which can passively reduce peak forces. Further, they can
be used to store and release energy to make a cyclic gait
more efficient by making the overall leg act as a spring.
Implementing the actuation in a musculoskeletal arrange-
ment, using tendon driven series elastic actuators (TD-SEAs)
connected to the joints in an antagonistic setup, further
advantages seen in humans can be exploited. The biarticular
structures can help to synchronize the joint motions to avoid
overextension of individual joints, increasing the robustness
of the overall leg motion [13]. Also, their ability to transfer
energy from proximal to distal joints can be utilized to design
more lightweight extremities.

The BioBiped2 robot (see Fig. 1 and www.biobiped.de)
which uses TD-SEAs for its joint extensors with passive
springs as antagonists and biarticular structures is used in
the example application in Sec. II. This robot is the second
generation robot based on the insights gained from the
BioBiped1 platform described in [12]. It is also the first to
which the approach proposed in this paper is being applied.
Hardware improvements over the first generation include ball
bearings in the joints, lower gear ratios for higher rope speeds
and a modular electronics design to allow the use of more
sensors and actuators depending on the current motion goal.

To achieve a desired motion on such a musculoskeletal
robot a number of parameters in hardware and software
influencing the passive and active dynamics and control
properties have to be designed and properly tuned. Using
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detailed multi-body system dynamics models like for con-
ventional rigid robots is an even more difficult process for
musculoskeletal robots. The highly elastic structures of the
TD-SEAs, the dynamic interplay between multiple links and
joints through biarticular structures and changing interaction
with the ground during dynamic bouncing motions make
a sufficiently accurate modeling of musculoskeletal robot
dynamics highly difficult. Differences between simulation
model and hardware that are non-trivial to remove include
among others the non-linearities of physical springs, the
unknown friction in joints and the modeling of the ground
contact [7]. Therefore, optimization of these parameters only
by robot dynamics simulation is not sufficient.

On the other hand using the actual robot in a hardware-
in-the-loop optimization to find the best parameter values is
very expensive with respect to time and can also be harmful
to the robot hardware prototype. The number of robot experi-
ments needed for the optimization depends on the number of
parameters involved. In musculoskeletal robots the addition
of elastic elements and biarticular structures increases this
number compared to rigid robots. Each experiment has a
wear on the robot’s hardware, which restricts the number of
experiments possible. Further, the time needed for manually
modifying hardware parameters, like spring stiffness or lever
arm length, makes each experiment costly. Damaging the
hardware through use of unsuitable parameter combinations
adds to the cost of the robot experiments in terms of repair
time.

Therefore, a new approach is presented to reduce the
costs of optimizing design and parameter tuning of muscu-
loskeletal robots. The number of robot experiments needed
is reduced through systematic interpretation of results of
specifically designed simulation experiments. Furthermore,
parameter combinations are excluded which are possibly
harmful to the hardware and by sequencing the experiments
to have fewer hardware modifications in between them.

A. State of the Art

Design and tuning of elastic musculoskeletal bipedal
robots has been described by Hosoda et al. [5], [8] and
Niiyama et al. [9], [10].

In [5] the design, tuning and motion generation of a pneu-
matic biped which performs jumping, walking and running
motions is described. The motion parameters are manually
tuned for each of the motions performed without the use of
simulation or optimization methods.

In [8] inertial measurement sensors in the trunk of the
robot are used to detect its roll angle for stabilization of a
rebound motion. Since the experiments are performed only
on the hardware without help of simulation models, hundreds
of trials on the robot are needed to collected sufficient data.

While in [10] a simulation model is used to adapt human
muscle activation patterns to the Athlete robot simulation
model, the resulting parameters are still manually tuned on
the robot afterwards.

In [12] the BioBiped1 musculoskeletal robot performs
synchronous and alternate hopping motions using a manually

Fig. 2: Overview of the steps performed in the optimization process.

tuned parameters.
All mentioned approaches, as well as the experiments

carried out on BioBiped versions 1 and 2 so far, used robot
parameters manually tuned directly on the hardware without
systematic exploitation of simulation results.

II. EXPERT GUIDED OPTIMIZATION BY EXAMPLE

The goal of this work is to efficiently determine a param-
eter configuration for possibly optimal motion of the robot
while keeping the number of hardware experiments and the
time consumed by performing them low. To find the optimal
values for the relevant motion parameters a hardware-in-
the-loop optimization is performed which is guided by a
human expert. This expert reduces the number of hardware
experiments by applying knowledge about the robot’s be-
havior gained from previous experiments, biomechanical un-
derstanding of the system, and interpretation of results from
simulation experiments. As the knowledge from previous ex-
periments and the biomechanical understanding are difficult
to exploit in a systematic and reproducible manner, this work
will focus on the systematic generation, interpretation and
usage of the simulation results. This approach is split into
the four steps shown in Fig. 2 which are detailed in the
following sub-sections.

The approach is applied to the musculoskeletal bipedal
robot BioBiped2 shown in Fig. 1, which uses TD-SEAs
based on DC-motors, synthetic ropes and metal extension
springs as actuators. For the simulation experiments a multi-
body system (MBS) simulation model is used, that was
developed for the BioBiped robot series in [11].

The overall goal of the BioBiped project is to perform
different gaits on a single robot configuration from jogging
to walking to stable standing. As first step towards jogging
with this new robot model, hopping is considered. The
performance of a synchronous hopping motion, including
impacts and push-offs, is optimized here as a prerequisite
for future jogging motions. While in this robot multiple bi-
articular structures can be attached, in this example only the
bi-articular GAS is used because of its relevance for the
considered hopping motion.

A. Definition of Motion Goal and Optimization Settings

The motion goal needs to be defined including a quality
criterion which can be measured or derived for both the sim-
ulation and the hardware experiments. Using the human leg



as model, the biomechanical understanding of its functional
structures is used to identify which of the robot’s structures
are relevant for the selected motion goal.

The goal of the example optimization is to improve the
hopping performance in a synchronous hopping motion.
From biomechanics it is known, that human hopping is
primarily powered by ankle motion [2]. Therefore, the me-
chanical structures in the BioBiped2 robot most relevant for
this motion are the active mono-articular ankle extensor SOL
and the passive bi-articular GAS.

So the parameters p subject to the optimization performed
in this example application are the stiffness of the SOL and
GAS structures as well as the rest length and lever arm of the
GAS. For the SOL and GAS stiffness five different springs
are available with their parameters listed in Tab. I. The GAS
structure has a fixed lever arm length on the thigh and six
possible attachment points at the heel (shown in Fig. 1c) with
their distance from the center of the joint listed in Tab. I.
Its rest length is the only continuous parameter which is
described through the knee and ankle angles corresponding to
its rest position. This is the most practically viable approach
on the robot, since both joints feature position encoders,
which can be used to measure the currently set rest length.
Positioning the knee joint at 45 deg bent from full extension
the adjustable GAS rest length corresponds to ankle joint
angles between 0 deg and 40 deg bent from center position.
This GAS rest angle α is defined as shown in Fig. 1c (with
the SOL disengaged).

The objective of the optimization is to minimize the
quality value q ∈ R. It depends on the vector of design
parameters p, which may include real- and integer-valued
parameters and which are to be tuned by the expert guided
optimization approach. The quality q of the hopping is
calculated from the duty factor qdf and the maximal center
of mass (CoM) height qcom as shown in Eq. (1). The CoM
position is located in the lower trunk in straight standing,
which is used as the fixed reference point for the hopping
height measurements

q(p) =
q̂df(p) + q̂com(p)

2
. (1)

Using just one of them for the quality might allow for
non-hopping motions to achieve good quality values, e.g.
by just pulling up the feet for a low duty factor or just
standing on fully extended legs for a high CoM height. The
combination of both ensures an actual hopping motion with
flight phase and upward motion of the CoM. To ensure an
equal weight of both parts they are normalized based on
the minimal and maximal values found in the simulation
coverage experiments: q̂df(p) = (qdf(p) − qmin

df )/(qmax
df −

qmin
df ), q̂com(p) = (qcom(p) − qmin

com )/(qmax
com − qmin

com ). Also,
to formulate this as a minimization problem qcom is set to
the negative maximal CoM height of one motion cycle. The
values of the two parts are calculated as shown in Eq. (2):

qdf(p) =
tstance

tstance + tflight
, qcom(p) = −hmax (2)

Attachment point 1 2 3 4 5 6
Distance [mm] 45.3 51.1 56.8 62.7 68.5 74.5

Spring constant [N/m] 4100 7900 10000 13000 15600
Force limit [N] 162.8 341.5 356.7 341.5 386.7

TABLE I: Parameter values of the available attachment points and springs.

In simulation the maximal CoM height hmax can be directly
read from the model as the highest point of the CoM
trajectory during flight phase. For the robot experiments this
value is calculated as a combination of accelerometer and
kinematic data. The vertical position of the trunk is calcu-
lated from the measured joint angles via forward kinematics
during ground contact and the accelerometer data is used to
calculate the trajectory during the flight phase. The drift of
the accelerometer is compensated using the heights of the
trunk known from the kinematics just before and after the
flight phase.

The ground contact forces are used to divide the motion
into stance and flight phase for both the simulation and the
robot. The duty factor qdf is calculated as stance time tstance

in relation to the time of a hopping cycle tstance + tflight.
A minimal vertical force value of 10 N is used to detect
ground contact for the simulation and the robot to ensure
equal calculations for both.

As safety criterion for the robot the maximal forces fmax,
that occur at the actuation structures for SOL, GAS and VAS,
are compared to the force limit f spring

limit of the spring currently
used in the respective structure on the robot which can be
seen in Tab. I. Configurations where the limits of any of the
three springs are exceeded as shown in Eq. 3 are marked in
the visualization and excluded from the robot experiments to
protect the mechanics.

fxmax > f spring
limit , x ∈ [SOL,GAS, V AS] (3)

While hopping, the robot is stabilized by an external mecha-
nism constraining its trunk motion to vertical translation. The
hopping is performed on flat ground and the motor power
supply is limited to maximal output of 10 V to protect the
system.

The motion trajectory is generated by a state machine
with two states switching between a bent and an extended
leg configuration. Transitions between the two states are
triggered by the ground contact events touchdown and liftoff
and trajectory transitions are smoothened by a spline inter-
polation from the current actuator positions to the new goal
positions. The tracking of the trajectories is performed by
a motor position controller with the same manually tuned
gains in simulation and on the robot.

Initially the robot is in the bent configuration and is
dropped manually from a height with 5 cm ground clearance.

B. Design of Simulation Experiments

The simulation experiments are designed to achieve three
goals:

• Understanding the sensitivity of the quality criterion,
• Recognizing correlations of multiple parameters,



• Selecting a starting point for the robot experiments.

For the first two goals a coverage of the parameter space
is needed and for the third an optimization in simulation is
used to find a good starting point.

To achieve a good coverage of the parameter space with
the simulation in feasible time the continuous parameter GAS
rest angle is discretized into nine values. Together with the
three discrete parameters this results in a total number of
parameter configurations for the coverage simulation exper-
iments of 9 ∗ 5 ∗ 5 ∗ 6 = 1350. With an average of 10 s
needed to simulate the experiment for one configuration the
approximate total time needed for simulation is 3h 45m,
which allows for a full factorial design of experiments [1].

To optimize the continuous parameter this nonlinear func-
tion with continuous and discrete variables a mixed-integer
nonlinear problem (MINLP) has to be solved without gradi-
ent information. A surrogate based mixed-integer nonlinear
black box optimization is chosen [3], which can make use of
the already extensive data gained in the coverage experiments
as initial data set for its surrogate function.

C. Visualization and Interpretation of Simulation Results

The goal in this step is to systematically leverage the
results from the simulation experiments to help plan the
robot experiments to be as efficient as possible. Mapping
the simulation results to the robot results is difficult to
automate, since the model error of the simulation and any
inaccuracies in setup of the hardware are not known. Results
from the robot experiments could be used to improve the
simulation accuracy, but this is beyond the scope of this
work. Therefore, a systematic approach is used to leverage
the knowledge gained by interpreting the simulation results
with the help of visualization of the quality criterion.

As the parameter space has four dimensions plus the
dimension of the quality criterion the visualization has to
be split into multiple plots. A two dimensional grid of two
dimensional plots was chosen with the quality criterion rep-
resented through color as can be seen in the overview Fig. 3.
Due to space constraints only a subset of the parameter
space is visualized in more detail in this publication. For
the reduction of the parameter space three plots showing
different sectional planes through the optimal configuration
found in simulation are shown in Fig. 4.

1) Exclusion of harmful parameter configurations: As can
be seen in the overview Fig. 3 and in the detailed plots in
Fig. 4 only a few harmful configurations, marked as magenta
diamonds, were identified in simulation based on Eq. (2).
These configurations lead to maximal forces in one of the
three elastic structures of SOL, GAS or VAS that were higher
than the specified force limit of the springs to be used on the
robot. To protect the robot from damage, these configurations
will be excluded from the robot experiments.

2) Adjustment of the quality criteria visualization bound-
aries: The upper boundary for the quality criterion is set to
0.7 in the visualizations shown in this paper. This value was
manually selected by the expert to focus on the relevant area
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Fig. 3: An overview of the results gained through the simulation coverage
experiments spread over the parameter space. All plots show the same
sectional plane of the parameter space with the GAS rest angle on the x-axis
and the SOL stiffness on the y-axis. The plots in each column share the same
GAS attachment point 1 to 6 from left to right. The plots in each row have
the GAS stiffness in common, with the lowest spring coefficient in the top
and the highest in the bottom row. A more detailed excerpt of the plot with
the best value can be found in Fig. 4a. (black circles: simulation experiments
colored with quality values (best values are dark blue), magenta diamonds:
harmful configurations, green circle in bottom row second column: the best
value found)

of the parameter space and clearly show the differences in
the quality around the optimal value as can be seen in Fig. 4.

3) Exclusion of parameters: In Fig. 4b it can be seen that
the stiffness value of the GAS structure has only a very small
influence on the quality criterion, but cannot completely be
excluded from the optimization.

4) Recognition of parameter correlations: By visualizing
all sectional planes of the parameter space as shown in Fig. 4,
linear correlations between all parameter combinations can
be visually inspected. In this example application, a linear
correlation is only found between GAS rest angle and GAS
attachment point as shown in Fig. 4c. This information is
used in the next section when planning the robot experiments.

D. Expert Guided Robot Experiments

Based on the interpretation of the simulation results the
robot experiments can now be planned and executed in a
more efficient manner.

1) Design for the initial robot experiments: First a start
configuration for the robot experiments has to be selected.
Based on the simulation results, it is safe to use the optimal
configuration found in simulation, as no harmful configura-
tions are close to it. The initial robot experiments are planned
around the start configuration varying each parameter by a
single step in both directions as proposed in [1] with the
central finite differencing approach described in [1]. The
step size is chosen for the discrete parameters to be one
step and for the continuous GAS rest angle to be the size
of its discretization. As these step sizes show significant
changes in the quality criterion, this will give the expert a
first impression of the gradients of each parameter on the
robot and allow for a visual mapping between simulation
and robot results.

2) Execution and further selection of robot experiments:
After the seven initial experiments, the results are visualized,
shown in the top left plot in Fig. 5a entitled ’experiment 7’.
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Fig. 4: Three different sectional planes of the simulation results cut through the best configuration. (black circles: simulation experiments colored with
quality values, magenta diamonds: harmful configurations, green circle: the best value found)

Here it can be seen, that the best configuration so far (marked
with a green circle) has a lower SOL stiffness than the
optimum found in simulation (marked with a purple square).
Following the gradient in the quality value towards the next
lower SOL stiffness value reveals an even better result in
’experiment 8’. By following this gradient further along
the SOL stiffness and GAS rest angle parameters a local
optimum is found in ’experiment 10’. As the visualization
after ’experiment 12’ shows that the SOL stiffness parameter
set to 10000 N

m leads to the best results in this sectional
plane, the search is continued in the sectional plane between
GAS attachment point and GAS rest length shown in Fig. 5b.
Due to the linear diagonal correlation found in this plane
in the simulation experiments, neighboring configurations
along this correlation are tested in experiments 13 and
14 as shown in Fig. 5b. In experiments 15 and 16 more
fine grained changes of 2 deg to the continuous GAS rest
angle parameter are tested with no further improvement of
the quality criterion. With experiments 17 to 19 all direct
neighbors of the best configuration found so far are tested.

3) Termination of the robot experiments: The termination
criterion used in this example application is the confirmation
of a local optimum. To ensure a local optimum also the
neighboring values along the parameter correlation found
in simulation between GAS rest angle and GAS attachment
point have been tested.

E. Comparison to Surrogate Based Optimization Method

To be able to evaluate the proposed approach, a con-
ventional hardware-in-the-loop optimization is applied to
the example application for comparison. The optimization
problem is formulated as a minimization problem using the
quality criterion q as described in Eq. (1). Additionally, the
safety criterion described in Eq. (3) is used based on the
simulation data to identify harmful configurations before they
are tested on the robot. When the optimization chooses to
evaluate such a harmful configuration, it is not performed on
the robot, but marked as infeasible for the optimization. The
optimization terminates, when the quality criterion converges
or the number of robot experiments after the initial design

is twice that of the expert guided approach, namely at
experiment 31.

The optimization has to be performed with a problem
solver capable of handling mixed-integer nonlinear problems.
A surrogate based mixed-integer black box optimization ap-
proach (SurOpt) [3] has been shown to find good parameter
configurations with a low number of hardware experiments
for related problems [4]. Therefore, it is a valid candidate
for comparison with the expert guided approach presented
in this work.

The parameters to be optimized are the same as in the
expert guided approach: SOL stiffness, GAS stiffness, GAS
attachment point and GAS rest angle. The ranges of these
parameters are normalized to be mapped to the ranges
from 0.0 to 1.0 to allow for an efficient search in all
parameter dimensions. A branch and bound approach is used
to handle the three discrete parameters. A distance based
update criterion is used in this optimization (compare [3],
Chapter 4.2), which enforces a minimal distance ε between
tested configurations. The value of ε is chosen to be 0.025,
corresponding to changes in the GAS rest angle of 1 deg,
which is the minimal change that is practically feasible on
the robot.

As suggested in [3], expert’s guesses are used for the
initial design points. Here the optimization is started on the
robot with the same initial design around the simulation
optimum. Sequential updates to the parameter configuration
are selected by the optimization algorithm to either improve
the quality criterion or the surrogate function mean square
error as described in [4]. The configurations are tested
on the robot and evaluated in the same manner as for
the expert guided experiments making the resulting quality
values directly comparable.

The optimization found the same solution as the expert
guided approach after 28 robot experiments, but its termi-
nation criterion of converging results was not yet fulfilled.
After 31 experiments the optimization was stopped with
the maximum number of experiments defined as second
termination criterion.
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Fig. 5: Iterative construction of the visualization for the results of the robot experiments. Markers show the best configuration from simulation as purple
square, the best configuration on robot so far as green circle and the newly added result as red star.

F. Discussion of Results

The best parameter configurations p found by manual
tuning, the simulation optimization, the expert guided ap-
proach and the SurOpt optimization with their corresponding
quality values q(p) and maximal CoM heights evaluated on
the BioBiped2 robot are listed in Tab. II. The quality from
the manually tuned result of 0.443 is improved already by
using the optimal configuration found in simulation on the
BioBiped2 robot which leads to a quality value of 0.375.
Further improvement was possible using the expert guided
approach and the SurOpt hardware-in-the-loop optimization,
both resulting in the same optimal configuration with a
quality of 0.342.

While the expert guided approach and the SurOpt opti-
mization both find the same optimal configuration the former
needs fewer robot experiments as shown in Fig. 6. It can be
seen that it took SurOpt 28 experiments to find this optimum
while the expert found it on the 10th experiment.

To better understand the results the quality value can be
split into its two parts, the maximal center of mass height
qcom and the duty factor qdf. While the quality improvement
through the simulation stems from both the maximal CoM
height and the duty factor, the improvement made in the
robot experiments comes from an increased maximal CoM
height. Compared to the manually found configuration the
optimal configuration found in simulation already results in
an improvement of the maximal CoM height of 12 mm.

experiment number

qu
al

ity

5 10 15 20 25 30
0.34

0.36

0.38

0.4

0.42

0.44

experiments (expert guided)
best value (expert guided)

experiments (SurOpt)
best value (SurOpt)

be
tte

r

Fig. 6: Comparison of the quality criterion value over the course of the
expert guided and SurOpt optimization robot experiments. It can be seen that
the same seven initial configurations have been used on both approaches.
Afterwards the expert guided approach improves the quality criterion much
quicker and finds the best solution in experiment 10 while SurOpt finds the
same configuration only in experiment 28.

But the optimal solution found by both the expert guided
and the SurOpt optimization gives an even higher gain of
22 mm while the duty factor is almost the same as found
through simulation.

III. CONCLUSION

This work introduces a systematic approach to optimize
parameters of a musculoskeletal bipedal robot efficiently



SOL GAS results num.

stiffness
[N/m]

stiffness
[N/m]

attach-
ment
point

rest
angle
[deg]

q
qcom
[m] qdf

robot
experi-
ments

manual
tuning 15600 7900 3 30 0.443 0.783 0.383 14

simulation 15600 15600 2 30 0.375 0.795 0.352 0
expert
guided 10000 15600 2 35 0.342 0.805 0.354 19

SurOpt 10000 15600 2 35 0.342 0.805 0.354 31

TABLE II: Shown are the parameter configurations p for the best
(minimal) quality values q(p) found with manual tuning, the simulation
optimization, the expert guided approach and the SurOpt optimization. The
resulting quality values were produced on the BioBiped2 robot. The number
of robot experiments needed to find these configurations are listed in the
last column.

by reducing the number of needed hardware experiments
through exploitation of simulation results. By systematic
interpretation of the simulation results an expert can plan
the hardware experiments to be more efficient than a state-
of-the-art hardware-in-the-loop optimization method.

A parameter optimization of the musculoskeletal Bio-
Biped2 robot to increase hopping performance was used as
an example application to compare this new approach with
a state-of-the-art hardware-in-the-loop optimization method.
The parameters selected for optimization all had significant
influence on the quality criterion, except for the stiffness of
the GAS. As the quality criterion is a performance criterion
which reflects the hopping height of the musculoskeletal
robot, this can be explained through the biomechanical
understanding of the role of the GAS structure. Its main
purpose is to distribute power between the knee and ankle
joints and not to store and release energy in its elastic
element. Therefore, its elastic property is not as important
for the quality criterion when compared to its other two
parameters, rest length and lever arm, which shape the
kinematics of the power transfer. The other two parameters of
the GAS (lever arm length and rest length) showed significant
influence on the hopping performance. As the role of the
GAS in human locomotion includes powering the push-off
of the leg before the swing phase, it can be concluded
that optimizing its parameters is important to improve the
locomotion performance.

In this example application the newly presented expert
guided approach needed a total number of 19 hardware
experiments to find and validate the optimal configuration.
While the state-of-the-art optimization method found the
same solution, 31 experiments were needed and no validation
of it to be at least a local optimum was included. Further,
through the expert guided sequencing of the experiments
less time was needed for the hardware modification between
experiments. In total the newly presented approach needed
only 61% of the robot experiments and 52% of the time for
the experiments and hardware modifications compared to the
other optimization method while finding the same result.

Although the presented approach can be applied to general
robot designs as well, it is expected to be most beneficial for
highly complex robot designs such as musculoskeletal robots.

For such robots with biomechanically inspired elasticity and
damping properties, optimally balancing passive and active
dynamics and control properties through parameter tuning is
less effective with existing approaches.
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