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Abstract— Swing leg adjustment, repulsive leg function and
balance are key elements in the control of bipedal locomotion.
In simple gait models like spring-loaded inverted pendulum
(SLIP), swing leg control can be applied to achieve stable
running. The aim of this study is to investigate the ability of
pendulum like swing leg motion for stabilizing running and
reproducing a desired (human like) gait pattern. The employed
running model consists of two sub-models: SLIP model for the
stance phase and a pendulum based control for the swing phase.
It is shown that with changing the pendulum length at each
step, stable running gaits with widely different performances
are achieved. The body vertical speed at take off is utilized
as feedback information to tune the pendulum length as the
control parameter. In particular, the effect of the pendulum
length adjustment on the motion characteristics like horizontal
speed, apex height and the stabilized system energy will be
investigated. With this method key features of the human
like swing leg motion e.g. leg retraction can be reproduced.
Higher speeds correspond larger angular motion of each leg
which is in agreement with experimental results in previous
studies. The presented model also explains the swing-leg to
stance-leg interaction mechanism which was not addressed
in the underlying SLIP model. This conceptual model can
be considered as a functional mechanical template for legged
locomotion and can be used to build more complex models, e.g.
having segmented legs or an upper body.

I. INTRODUCTION

Stabilization of the locomotion as the main issue for the
control of bipedal robots can be divided to leg swinging,
bouncing and balancing. Due to the complexity of the robots
and, of course humans, the implementation of stabilizing
strategies is a challenge. However, fundamental strategies to
gain stability can be deduced from very simple simulation
models. Rebounding on compliant legs is one of the basic
mechanical consideration in human locomotion, especially
running [1]. Simple conceptual models, called “templates”
[2] have proved to be very helpful for describing and
analyzing of animal/human locomotion. On the other hand,
several bipedal robots were developed based on conceptual
modeling of human locomotion to produce a robust and
efficient movement [3], [4], [5].

As one of the fundamental template models, the spring-
loaded inverted pendulum (SLIP) model [6][7] consisting of
a point mass atop a massless spring describes basic features
of human gaits (walking [1], hopping and running [6][8])
very well. Another interesting property of the SLIP is its
asymptotic stability against perturbations conserving energy,
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even with a constant angle of attack [8]. In this model with
passive mechanism during contact times, the motion stability
only depends on the leg adjustment approach. Among studies
investigating the influence of kinematic conditions on run-
ning motion stability like [9], a few models suggest strategies
for stablizing running or hopping movements [10], [11], [12],
[13], [14]. In [15], different leg adjustment strategies that
provide stability over a broad range of running patterns are
considered and compared to human running data. It is shown
that adaptation of leg parameters (length and angle) matches
to a specific leg stiffness adjustment. Therefore, in addition
to the necessity of having two different controllers to adjust
leg parameters, synchronizing them makes it more complex.

In [16], the influence of a pendulum-like swing leg move-
ment on the stability of spring-mass forward hopping was
investigated. This method inherited the idea of having an
oscillatory swing leg motion by addition of a torsional spring
to the hip joint in passive walker [12]. Such a passive
structure also results in an elastically enforced pendulum
motion during swing phase. In the Knuesel et al. paper [16],
the model just had one leg and the pendulum motion was
utilized as the leg adjustment and the swing leg motion
simulation during flight phase was not the goal. The result
of these assumptions is forward hopping (not running) with
high apex height which is not practically feasible.

A more comprehensive application of pendulum like mo-
tion for swinging the leg (two pendulum in flight and one in
stance) is presented for running in this paper. Combination
of SLIP model and pendulum motion gives the possibility
to define both legs configuration during whole motion. The
focus of this paper is presenting a conceptual model to
produce human like swing leg movement beside the stability
of motion which is not addressed in previous researches.
Additionally, we identified several types of running patterns,
e.g. symmetric and asymmetric running, that accounts for
high variability of gait. In that respect, the only control
parameter is pendulum length adjustment which is done by
an event based control using vertical body speed at takeoff
moment. In summary, a combination of SLIP and pendulum
resembles the swing leg motion and provides the stability.

II. METHODS
A. Running model

The model splits the motion to two continuous phases
(flight and stance) which switch to each other by a discrete
mapping. With this model, running and hopping could be
explained by the equations defined in the following subsec-
tions. Note that this model is a conceptual model to describe
human locomotion (like SLIP), not a physical model.



Fig. 1. Stance and flight phases of running modeling using SLIP and
pendulum motion. The pendulum motion just determines the leg direction
and has no effect on CoM motion. Dashed lines are applied to show virtual
pendulums which have no interaction with CoM movement.

1) Flight phase: In flight phase, the legs do not touch the
ground and the Center of Mass (CoM) moves in a ballistic
motion. Since the legs are massless, their motions never
affect the CoM movement. However, both legs motions are
represented by two separate single pendulums with static
pivot points (see Fig.1). The equations of single pendulum
motion which are used for the swinging legs, are as follows:

p=-2F ()

P

in which [, and ¢ are the pendulum length (equal for both
legs) and angle with respect to vertical axis as shown in
Fig.1, respectively and ¢ is the gravitational acceleration.
Since the pendulum mass does not play any role in pendu-
lum movement, considering massless legs (converging the
pendulum mass to zero) and no interaction between the leg
and body motion is valid'.

With these two pendulums we want to resemble the
front and hind legs motion during flight phase. The front
leg pendulum, like e.g. a fixed angle of attack represents
a possible leg adjustment strategy which is required for
simulating locomotion with a SLIP model. After touch down
occurrence, the front leg converts to the stance leg and the
other leg remains a pendulum. The only parameter which
influences the leg motion in flight phase is the pendulum
length.

The model acts in the sagittal plane with x and y being the
position of the center of mass. The CoM motion is defined
by
=0
y=-g

2) Stance phase: In the stance phase, we have two legs,
one of which is in contact with the ground and called stance
leg. The stance leg is modeled by SLIP (Spring Loaded
Inverted Pendulum) which is a massless spring with a mass
on top of it. This point mass represents the body mass and
can be considered as the CoM (Center of Mass) of the whole
body?. The parameters of the spring-mass model were set

2

Ut is remarkable that this is a conceptual model (like SLIP) to describe
the running motion characteristics and is not physically implementable.
Therefore, in this model two completely separate motions are considered
for leg and body movements.

2In human body, Sacrum which is less than 10 centimeter above hip point
is considered as an acceptable approximation of CoM [17]. In SLIP model,
a virtual leg between CoM and foot is approximated by spring.

similar to those used in [8]. As described in the previous
section, the pendulum mass is not relevant in defining the
motion (See Eq. (1)). Then the CoM motion is described by
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in which z, y, I k and [y are the horizontal and vertical
positions of the CoM, the leg length, the spring stiffness
and rest length, respectively. The leg length is computed by
I = y/x2 + y2. Stance phase starts with touchdown (TD),
the moment that the distal end of the leg hits the ground
and ends with takeoff (TO) when the ground reaction force
(GRF) has no vertical component.

3) Switching between stance and flight: A mapping be-
tween stance and flight models is required two times in each
step; once in TO and once at TD. In take off moment, the
front leg motion is continuation of the pendulum in stance
leg. The initial conditions of the second pendulum which
are determined by its angle (¢) and angular velocity (¢) are
adopted from the stance leg with the following equations:

p = arctan £
="

This pendulum movement which replicates the hind leg mo-
tion, keeps the angle and angular velocity of the previously
stance leg, as the second swinging leg in flight phase. Then,
during flight phase, two pendulums define the legs’ motions
and the CoM motion is determined by the ballistic motion
as described before.

At touch down moment which is detected when [y cos ¢ = v,
the front leg will change to the springy leg and the hind
leg continues its pendulum motion. At this moment the
stance leg initial conditions are defined by inheriting the
CoM motion from flight phase dynamics (Like original SLIP
model). Therefore, to switch from flight to stance, we just
need to find the TD moment by the front leg orientation and
vertical position of the CoM.

B. Event based control for pendulum length adjustment

In pendulum motion, the only parameter that can change
the motion characteristics like frequency, is the pendulum
length. With a constant pendulum length the model pro-
duces periodic motion that is not robust, i.e. stable limit
cycles have small regions of attraction. Consequently, the
resulting periodic motion is sensitive to parameters variations
or perturbations (low robustness). To make the controlled
system more stable and even robust, we present an event
based pendulum length adjustment technique at each takeoff
moment with the following equation:

yto
lp =lpoy [ == )]
v P Yo
in which [, is the initial pendulum length and o and ¥4,
are the absolute vertical CoM velocities at touch down and
at take off, respectively.



In the following, the initial values are set to desired
pendulum length and vertical speed which result in a limit
cycle without adapting at each step. Hence, if the states of the
system start from somewhere on the limit cycle, then 1, is
equal to 7o, the pendulum length remains equal to [, and the
states stay on the limit cycle producing the periodic motion.
On the other hand, if they leave the limit cycle, changing
the pendulum length with respect to the ratio between the
vertical velocity and its desired value can return it back
to another limit cycle. This method of event based control
results in a stable solution with a takeoff vertical speed in
the neighborhood of the initial value 9o, if 1 < V370
which means the vertical velocity at the first takeoff is close
enough to 9o. (See Appendix. A for the proof). It shows
that the system is ultimately bounded in a sufficiently large
neighborhood of the stable solution which supports deviation
with magnitude 70% of the initial value.

C. System analysis

The simulations starts with touch down and a complete
step is defined from TD to TD including one stance and one
flight phase. Two sequential steps produce a stride, defined
from touch down of one leg to the next touch down of the
same leg. The stability is analyzed considering the n-step
periodic motion which means having the same CoM states
after n steps. Since with the proposed modeling and control
approach, in many cases we obtain ultimate boundedness
(especially for n > 2) instead of asymptotic stability, K-
step stability is utilized [18], [16]. The controlled system is
K-step stable (ultimately bounded) if it does not fall and
never leaves a certain neighborhood of the periodic response
in K steps. With this definition, a broader and maybe more
applicable definition for mechanical stability is presented.
On the other hand, with evaluating the eigenvalues of the
Poincaré map, it is not possible to find the responses which
are ultimately bounded but not asymptotically stable.

In order to detect the n-step periodicity of the motion,
the algorithm which is shown in Fig. 2 is utilized. In this
algorithm, the event is reaching the maximum height (apex),
in which the vertical speed is equal to zero and the energy
of the system can be computed by the horizontal speed and
the hopping height. So, V(i) and y,(i) are the horizontal
velocity and CoM height at 5*" apex. Through this algorithm,
the motion is n-step periodic if the following conditions are
held.

{ Va(i) = Val(i — )| <
[Ya (i) — ya(i —n)| < €y

Hence, considering constant numbers ¢, and €, close to
zero, with this definition the system is n-step periodic if
the horizontal speeds and hopping heights are repeated after
every n steps. This definition is more precise than having the
same energy in every n steps, when different combinations
of speed (V) and height (y,) can result in same energy
level. The parameters of the model and periodicity detection
are depicted in Table.l. Another relation which is checked
in this paper is dependency of the horizontal speeds to the

Vi, K-m<i<K

Vi, K—-m<i<K ©)

Forn=1:N
isPeriodic = true;
Fori=K-m-+1:k

Aya = Yali) — yali — n);

If |AVL] > €, or |Ay,| > ¢
isPeriodic = false;
break;

end

end
If isPeriodic

Ve=230  Vo(K —j+1);

Yo = % ;:1 ya(Kfj + 1);

E=1IMV?+ Mgy,

break;

end
end

Fig. 2. The algorithm to detect the periodicity. If flag isPeriodic is true,
the system is n-step periodic, otherwise we consider it as non-periodic. Vi
and ¥, are the average velocity and apex height of the last n steps. E is
the energy of the system which is measured at apex.

TABLE I
MODEL PARAMETERS

Parameter symbol value [units]
Body mass M 80 [kg]
Gravitational acceleration g 9.81 [m/s?]
pendulum length lp 0.1-0.25 [m]
leg stiffness k 20000 [N/m]
leg rest length lo 1 [m]
Nominal apex height Ya 1-1.25 [m]
Number of steps K 100
Maximum number of steps for priodicity N 10

pendulum length. To investigate the influence of changing

pendulum length on motion speed, the correlation of these

two variables are computed by:

cov(Vy, 1)
ovy,0 Ip

corrVy,l, = @)
in which couv(.,.) gives the covariance of two data variables
and o stands for the variance. Since, for 1-step periodic
motions, there is no variation in speed and pendulum length
in sequential apexes, this evaluation is performed for pe-
riodic motions with n > 1. Thus, increasing the pendulum
length yields in slower motion® and consequently, steeper leg
(smaller angle of attack) at touch down. It happens because
of swing leg retraction which is observed already in human
locomotion [19], [20], [21] and simulated models [22], [23],
[13]. Eventually, smaller angle of attack reduces the forward
speed [3] which means that the correlation between [, and
V, should be around —1.

For comparison with human running, the leg angle during
the complete stride is considered for different speeds.

3Tt is concluded from Eq.(1) and also with approximation of the pendulum
motion by ¢ = %4,0, the frequency of the motion is estimated as %. It

confirms that the pendulum length increment slows down the motion.
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Fig. 3. Leg angle during a complete stride for different running speeds.
Vertical lines show the takeoff occurrences which are between 31 to 37
percent of the gait cycle.

III. RESULTS

Running characteristics and its relation to the proposed
swing leg control parameters are investigated in this sec-
tion. With model parameters stated in Table. I, different
combinations of the initial conditions and pendulum lengths
resulted in various types of running. First of all, for each
horizontal speeds (1), the initial conditions are determined
by the initial angle of attack (o), pendulum angle (<,00)4 and
vertical speed (y;,). With these assumptions, the dimension
of search space is 5; three from initial conditions, one for
running speed and one for initial pendulum length. Each
combination of these parameters is simulated for 100 steps
and the stability analysis is performed as described in the
previous section.

A. Leg angle in running

Running with each speed could be produced by different
combinations of the initial conditions and control parameters
e.g. pendulum initial length and initial angle. In Fig. 3, the
leg angle is drawn during the gait cycle for a complete
stride. After touch down, the leg becomes more vertical and
the leg angle increases until take off. This angle increment
continues in flight phase. Shortly after takeoff, the leg stops
going backward (retraction) and forward motion (protraction)
starts. From this moment, the leg angle decreases until the
last 10 percent of the gait cycle. Before the next touch down,
leg retraction happens. This kind of swing leg retraction is
a key feature in human motion [13]. Human leg behavior
is also shown in Fig. 4 for different speeds. The human
leg motions are qualitatively similar to the simulated model.
Two peaks are observed in both figures and the range for
the angles are also close to each other. In the proposed
model, similar to human movement, the variations of the

4The angular speed of the pendulum is set to zero because any combina-
tion of angle and negative angular velocity (which is needed for the swing
leg) is achievable by changing the angle with zero angular velocity.
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Fig. 4. The human leg angles during complete stride for different speeds.
The plots are the average values for 21 subjects based on data, collected by
Lepfert [24]. Vertical lines show the takeoff occurrences which are between
43 to 48 percent of the gait cycle.

leg angle increase when the running speed increases. Ratio
between stance and flight phases’ durations is also similar in
simulation and human experiments and changes with running
speed.

B. Different running patterns

With the proposed modeling and control approach, several
types of running patterns are identified with different peri-
odicity (n extracted from the algorithm proposed in Fig. 2).
Different trends of CoM motion in sagittal plane are shown
in Fig. 5. This wide range of symmetric and asymmetric
running patterns demonstrates the ability to produce high
variability of the gaits.

In the first plot (Fig. 5,top-left) a sample of 1-step periodic

V. = 1.3m/s, 1-step Periodic V., = 1.9m/s, 3-step Periodic
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Fig. 5. Different hopping patterns of CoM movements. The periodicity

changes from gait to gait. The time window illustrates at least two periods.
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Fig. 6. Influence of pendulum length I/;, on motion speed V.. Darker points
mean smaller number of gait periodicity.

motion is depicted. In this motion, the CoM has the same ver-
tical position after each step and the horizontal displacement
is fixed at each step. In the next plot for 3-step periodicity
(top-right), the apex height in the first step is higher than
for the two next steps. This happens by having one short
and two sequential larger steps. Different step lengths and
apex heights can be observed in the other running patterns
as shown in Fig. 5.

C. Pendulum length change effect

In this section, the influence of changing the pendulum
length (I,,) on motion speed (V,.), apex height (3,) and sys-
tem energy (F) is investigated (See Fig. 2 for the definitions).
In Fig. 6, the points show the stable solutions for different
average velocities and pendulum lengths. It is observed that
for 1-step periodic motions, running between 1.2 m/s to
1.6 m/s can be performed with a large range of pendulum
lengths. In general, reducing the pendulum length results in
increasing the motion speed, as expected. Asymmetric run-
ning is achievable mostly by either increasing the pendulum
length for slow motions or shortening it for faster motions.

In Fig. 7, a linear relation between average pendulum
length and apex height is observed. It shows that with longer
pendulum, higher hopping height is obtained. It is also
demonstrated that 1-step periodicity is obtained just by lower
l_p and y,. This linear relation between pendulum length and
resulted apex height is employed in Appendix A to show the
stability of the system with the event based control approach
for pendulum length adjustment.

The effect of pendulum length variations on system energy
is illustrated in Fig. 8. The motions with higher energy are
obtainable using shorter pendulums which produce faster
motion with lower apex height, especially for 1-step periodic
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Fig. 7. Influence of pendulum length I, on apex height y,. Darker points
mean smaller number of gait periodicity.

motions. Finally, the correlation between the horizontal
velocity and the pendulum length is shown in Fig. 9, for
periodicities larger than 1. It is observed that with the
proposed technique no 2-step periodic motion is achieved.
Between the remained ones the correlation of V,, and [, for
one period is very close to —1. It shows that the predicted
relation between the pendulum length and horizontal speed
is valid. Therefore, the pendulum length can be utilized to
set the running velocity to a desired value.

IV. DISCUSSION

Most SLIP studies on running motion ignore the swing
leg motion [8], [13]. When addressing swing leg motion,
[16] applied subsequent modeling of stance and swing phase
using one leg. This results in forward hopping instead of
running. In this paper, a new approach is proposed for
describing complete legs’ movements during whole running
stride.

The suggested controller is based on a pendulum like
movement of the swing leg. Therefore, an oscillatory mo-
tion produced by a passive mechanism is the key idea of
mimicking the leg behavior. In this regard, not only 1-step
periodic motion was achieved, but also periodicity in more
steps was obtained. This achievement is remarkable, while
this method does not explicitly control the leg orientation or
even use information about it.

In order to increase the stability of the motion in the
manner of region of stability enlargement, an event based
leg adjustment control approach was presented. It was shown
that, although the initial running condition might not be
kept, with an appropriate set of parameters, the stability is
guaranteed. Hence, in the proposed control approach the only
required feedback is the vertical velocity at takeoff which is
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Fig. 8. Influence of pendulum length I, on system energy F. Darker points
mean smaller number of gait periodicity.

measured once at each step. Roughly speaking, a passive
motion in low level is just tuned once in each step with a
higher level feedback. This attitude is also close to human
behavior when we never think during motion except for
changing the speed or removing perturbations.

The results of our swing leg controller were also compared
with human running behavior. Similar trends in leg angle pat-
terns, especially some important features like leg retraction
are of significant outcomes of this paper. The range for leg
angle variation, the stance phase portion in whole stride and
increment of leg movement with respect to horizontal speed
increment are other similarities between human experiment
and the simulated model. It can be concluded that even
if the swing leg motion is not exactly pendulum like in
human locomotion, it is produced by an oscillatory motion.
On the other hand, if the pendulum motion is a proper
model for swing leg movement, it might be possible to
unify the complete leg motion with similar approaches like
virtual pendulum concept which are already shown for stance
leg [25]. Therefore, beside the virtual pivot point concept,
presented in [25] (or divergent point in [26]) for balancing
the upper body via mimicking the body motion during stance
phase by a virtual pendulum, whole locomotion might be
interpretable based on pendulum motion.

APPENDIX

A. Mathematical support of stability with Event based con-
trol pendulum length adjustment

From Fig. 7, a linear relation between the apex height
and pendulum length is observed. Although this relation is
not analytically provable because the SLIP model is not
integrable [27][28], placement of the points close to a straight
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Fig. 9. Correlation between horizontal speed and pendulum length for

different periodicities.

line is sufficient to consider the following equation.

Ya(k1) = Yak + @Al = U1 = U + @Al (8)

In which gy is the vertical speed at take off moment and
index k and Al stand for the k" step and the difference
between pendulum length in two sequential stpes (Al,, =
lpk —lp(x—1))- Considering Eq.(5), with some manipulations,
this equation converts to

al
Urpr = Ur + 7p0 (VI — vV Uk-1) )

Substituting ¢ in Eq.(9), by the same equation for in former
step results in

Y1 = Vi + \/ —Vik—2) (10)
Continuing this substitution untll the first step, gives
. . alpo ; ;
i = (= (Vi = Vo) (1n

If there exists a limit cycle with a fixed pendulum length (I,
and vertical speed g, then we have y?) = alpo. Therefore;

B
.90 .0
= (07 — o) +
It is possible to show that when k goes to infinity, the

Uk+1 converges to a fixed value (A) which is the root of the
following equation:

Ui Y3 (12)

P(A) = A* — 2423 — 3 A + B2

First suppose 1 > 7o, which means S is positive. Computing
polynomial P for A; = gy and Ay = go + \ﬂﬁ) results in

P(Ay) = (33 (14)

13)

—93) (7 — 343)



P(A2) = 3/Byg + 4893

If 91 < /370 then Eq.s.(14) and (15) have negative and
positive signs respectively. Consequently, Eq. (13) has a root
between A; and A,. Similar argument is valid when [ is
negative considering As = g9 — \/W . In summary, defining
error § = sgn(B)+/]/3| (in which sgn(.) is the sign function),
the polynomial P in Eq.(13), has a root between gy, and
Yo + 0 if the vertical velocity at first takeoff is not too far
from the desired value (11 < v/3go). Therefore, the vertical
speed converges to a value in the neighborhood of the desired
value. This argumentation guarantees a considerably large
region of attraction for the stable solution (limit cycle) of
the controlled system.

15)
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