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Abstract
A new control approach to achieve robust hopping against perturbations in the sagittal plane is
presented in this paper. In perturbed hopping, vertical body alignment has a significant role for
stability. Our approach is based on the virtual pendulum concept, recently proposed, based on
experimental findings in human and animal locomotion. In this concept, the ground reaction
forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion.
This concept is employed in designing the controller to balance the trunk during the stance
phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture
control are proposed as a unified controller. This method is investigated by applying it on an
extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping
are added to the SLIP model in order to make the model more realistic. The stability is
analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection
and moderate robustness are achieved, but with a low convergence speed. To improve the
performance and attain higher robustness, an event-based control of the VPP position is
introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is
used to design the feedback controller. Considerable enhancements with respect to stability,
convergence speed and robustness against perturbations and parameter changes are achieved.

(Some figures may appear in colour only in the online journal)

List of symbols, terms and definitions

Nomenclature

CoM Center of mass
GRF Ground reaction force
VBLA Velocity-based leg adjustment
TD Touch down
TO Take off
MLC Maximum leg compression
VPP Virtual pivot point
VP Virtual pendulum
VPPC VP posture control
LQR Linear quadratic regulator
VPPC-FP VPPC with fixed point

VPPC-LQR VPPC with LQR
aVPPC Approximate VPPC
eVPPC Exact VPPC
SLIP Spring loaded inverted pendulum
TSLIP SLIP extended by trunk
XTSLIP eXtended TSLIP

Model parameters

mt Trunk mass (kg)
ml Leg mass (kg)
m Total mass (kg)
Jt Trunk moment of inertia (kg m2)
Jl Leg moment of inertia (kg m2)
rCoM Distance hip to trunk CoM (m)
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rleg Distance hip to leg CoM (m)
l0 Leg rest length (m)
g Gravitational acceleration (m s−2)
k̃ Dimensionless leg stiffness
d̃ Dimensionless leg damping
rVPP Distance VPP to trunk CoM (m)
γ VPP angle (deg)
μ Leg adjustment parameter
Fleg Leg force (N)
yd Desired hopping height (m)

States for TSLIP

x Horizontal position of CoM
y Vertical position of CoM
ϕ Trunk angle

States for XTSLIP

x Horizontal position of hip
y Vertical position of CoM
ϕl Leg angle
ϕ Trunk angle

1. Introduction

The ability to perform efficient and robust locomotion is a
crucial condition for the more extensive use of legged robots
in real world applications. In that respect, robots can learn
from animals, if the principles underlying locomotion in
biological legged systems can be transferred to their artificial
counterparts. A great progress in this direction was introducing
simple models, coined ‘templates’ [1], able to represent the
overall dynamics of animal gaits. One of the most famous
models is spring-loaded inverted pendulum (SLIP) [2, 3] which
consists of a point mass atop a massless spring and provides
a good description of human gaits, such as walking [4],
hopping and running [2]. Despite its high level of abstraction,
it supported and inspired the development of successful legged
robots [5, 6] or was used as explicit targets for control [7], over
the years.

In this model, leg force is assumed to be proportional
to the amount of leg compression, i.e. the shortening of
the leg length measured between center of mass (CoM) and
the contacting point at the ground. At the same time, this
model assumes that leg forces are directed towards the CoM.
However, experimental data indicate that measured leg forces
do not point exactly to the CoM but sometimes intersect at a
point above it, called virtual pivot point (VPP) [8] or divergent
point (DP) [9]. In order to represent this observation in the
model, the SLIP must be extended to include a model of the
upper body. It is modeled by the addition of a rigid trunk
to SLIP which will be called hereafter as TSLIP (for trunk-
SLIP). Then, hip torques can be calculated to deviate forces
generated by the leg spring to intersect at the VPP and the
stabilization of the upright posture (or posture control) can be
achieved. In this model, the hip torque depends on the amount
of the leg force and the angular orientation of the leg with

respect to the trunk. Most of the control methods rely on the
feedback control of the trunk orientation with respect to an
absolute referential frame [5, 7, 10]. In contrast, this VPP-
based control scheme was shown to be capable of supporting
upright trunk posture during locomotion without the need to
explicitly measure the trunk orientation with respect to the
gravity direction. Similar to the adjustment of leg parameters
(e.g. leg stiffness/rest length) in the SLIP model, the position
of the VPP can be considered as a control target. This approach
was validated in simulations, where it yielded stable upright
walking and running patterns [11].

In this paper, we apply this concept to achieve a robust
hopping, considered as running with zero forward velocity.
Hopping offers the most fundamental framework to investigate
the structure of such a controller. Although it may appear as
a simple gait, during hopping the leg angle must be adjusted
during the flight phase to achieve stable motion. This is not
the case for running, for which simply placing the leg at a
fixed angle with the ground is sufficient for achieving stability
[12]. Hence, we have to introduce a control layer adjusting the
leg angle during the swing phase which was not considered
in former studies dealing with VP-based control [11, 8]. The
preliminary results of this approach on the TSLIP model are
presented in our previous work [13]. Since the presented
controller is not able to control the hopping height, another
controller is required for energy management. Leg rest length
adjustment during the stance phase is presented to solve this
problem as the third control layer.

As the simulation models predict already asymptotically
stable gait patterns with a fixed VPP location [8], step-to-step
changes in VPP placement could further enhance gait stability
and robustness. This can speed up the slow convergence to a
steady state and increase the robustness against perturbations.
Previous investigations also showed that placing the VPP out of
the trunk axis could be used for maneuver [11] or compensation
of energy losses [14]. In this study, we use a similar approach to
solve the issues regarding disturbance rejection and robustness.
With the VP concept, the complex process of generating a
suitable hip torque pattern is simplified to the specification
of the position of one point. Hence, it is particularly suited
for the application of event-based control. It is performed by
a feedback law using the states at the apex event in order to
adjust the VPP position during the next stance phase. In order
to approach real robot characteristics, mass and damping are
added to the leg to verify the control approach capabilities
under more realistic conditions. These extensions of the model
introduce new challenges in different control layers during the
flight and stance phases.

2. Methods

2.1. Models

Our models extend the SLIP [2, 3], a template [1] widely
used to describe bouncing gaits in animals [15], and are
implemented to various extents in many legged robots
[5, 7, 16–19]. Two extensions are considered here that include
important features present in real robotic systems but missing
in the traditional SLIP model. To ensure realistic properties,
we use as much as possible parameters derived from the human
case.
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(a) (b)

Figure 1. (a) TSLIP model with a rigid trunk and a massless
prismatic spring for the leg. (b) XTSLIP model with the mass,
spring and damper in the leg.

Table 1. Model fixed parameters for human [21].

Value (units)

Parameters Symbol TSLIP XTSLIP

Trunk mass mt 80 (kg) 54 (kg)
Leg mass ml – 26 (kg)
Trunk moment of inertia Jt 10.5 (kg m2) 10.6 (kg m2)
Leg moment of inertia Jl – 2.76 (kg m2)
Distance hip to trunk CoM rCoM 0.075 (m) 0.33 (m)
Distance hip to leg CoM rleg – 0.45 (m)
Leg rest length l0 1 (m) 1 (m)
Gravitational acceleration g 9.81 (m s−2) 9.81 (m s−2)

2.1.1. TSLIP model. The first extension consists in replacing
the point mass by an extended trunk, as represented in
figure 1(a). In our simulations, the model parameters
(table 1) are set to match the characteristics of a human with
80 kg weight and 1.89 m height. In the TSLIP3, all the body
mass is considered to be concentrated in the trunk.

When the leg does not touch the ground, the CoM moves
in a ballistic motion named the flight phase, where the leg
orientation can be arbitrarily adjusted (as the leg is massless).
The stance phase starts when the distal end of the leg hits the
ground (this event is called TD for touchdown) and ends when
the vertical component of the ground reaction force (GRF) is
equal to zero (this event is called TO for takeoff). During the
stance phase, the spring force, the hip torque and the gravity
affect the motion. Using l, l0 and k for the current leg length,
the leg rest length and the spring stiffness, respectively, the leg
force Fleg is generated by the spring along the leg axis given
by Fs = k (l0 − l) (see figure 1(a)). A torque can be applied
at the hip to stabilize the posture of the trunk. Symbols x, y
and ϕ are used to represent the CoM horizontal and vertical
positions and the trunk orientation, respectively.

2.1.2. XTSLIP model. In the second step, additional features
are introduced to reach a more realistic model of the leg. We
refer to this model as XTSLIP, for eXtended-TSLIP (eTSLIP).

3 In [20], a similar model was introduced, namely ASLIP, for ‘asymmetric
SLIP’. However, as this term can also designate an SLIP model with
asymmetric leg properties, we prefer to use the name TSLIP.

First, part of the total mass is transferred from the trunk to the
leg, as shown in figure 1(b). The total mass is divided between
the leg and the trunk in a human-like proportion, as given in
table 1. One consequence is that an impact with the ground
occurs at TD. It is modeled to be instantaneous and completely
inelastic. Concretely, an impulse is applied at the foot tip that
brings its velocity to zero. We consider that only the part of
the leg placed above the spring has significant mass. Hence,
the impact along the leg axis is neglected and the impulse
acts perpendicular to the leg axis. Another consequence of the
addition of the leg mass is that hip torque is also required
during the flight phase to adjust the leg angle. This causes a
perturbation of the trunk orientation during the flight phase
that must be handled by the controller during the stance
phase.

Second, damping in the leg spring is introduced with
a coefficient d producing a resistant force Fd = −dl̇. The
leg force is then given by Fleg = Fs + Fd (see figure 1(b)).
For convenience, we define the dimensionless leg stiffness
k̃ = kl0/mg and damping ratio d̃ = d

2
√

mk
which are used

hereafter instead of k and d.
The leg orientation, that must be introduced to

characterize the system state, is denoted ϕl , while x, y and
ϕ are used here for hip point horizontal and vertical positions
and trunk orientation. Details of the system equation derivation
are presented in appendix A.

2.2. Overview of the control system

Similar to the approach followed in the pioneer work of Raibert
[5], we decompose the hopping control problem into three
separated tasks: (a) upright posture, (b) forward speed and
(c) hopping height controls (see figure 2). Upright posture
(a) and hopping height (c) controls are active during the
stance phase, while forward speed control (b) is active during
the flight phase. The main focus of this paper is on upright
posture control, which is performed with a new approach based
on the VP concept. This part of the controller is explained in
detail in section 2.3. The strategies for the two other control
tasks are only briefly presented in section 2.4

2.2.1. Events used for control purpose. Four events are
defined for control purposes. Two of them, the TD and TO,
were already defined in section 2.1.1. They are used to switch
between the control tasks during the swing and stance phases,
respectively. Additionally, two other events are defined: apex
and maximum leg compression (MLC). Apex is the instant
during the flight phase where the system reaches its maximum
altitude. Hence, it is characterized by ẏ = 0 with ÿ < 0. On
the other hand, MLC is the instant during the stance phase
where the leg reaches its minimum length, i.e. l̇ = 0 with
l̈ > 0.

2.2.2. Periodic hopping motions and stability analysis.
Stability of the hopping motion is investigated using Poincaré
return map analysis, with the apex as the event to define
the Poincaré section. It is based on the definition of the
mapping function F, called the Poincaré return map, relating

3



Bioinspir. Biomim. 8 (2013) 036002 M A Sharbafi et al

Figure 2. Illustration of our three-layered controller, which includes: (a) upright posture control using VPPC with event-based control at
apex. This module gives hip torque τ during stance. (b) Forward speed control using the velocity-based leg adjustment (VBLA) during flight
phase. �O is the vector showing the leg direction. (c) Hopping height control gives desired rest length ld at maximum leg compression (MLC)
moment. Leg rest length adjustment put l0 and ld at apex and MLC, respectively.

the state S of the system at the crossing of two successive
sections, denoted as k and k + 1. This relation can be written
as Sk+1 = F(Sk). First, fixed points S∗ of F, defined by
S∗ = F(S∗), have to be identified. These correspond to the
periodic motions of the system. In our case, the dimension
of the state vector to be considered for the Poincaré return
map analysis can be reduced. According to the definition of
apex, ẏ is always equal to zero and can be omitted. For steady
locomotion, the horizontal position x and its periodicity are
considered irrelevant (but of course not the forward velocity ẋ)
and is also omitted. Moreover, for upright hopping on place,
fixed points can be found a priori, as ẋ must be equal to 0,
the angles (ϕ and ϕl) equal to 90◦ and the angular velocities
(ϕ̇ and ϕ̇l) equal to 0. Hence, each fixed point is simply
characterized by its nominal hopping height, denoted here by
y∗. Accordingly, the state vector S of the system at apex and
the fixed points S∗ are

S =
{

[y, ϕ, ẋ, ϕ̇] for TSLIP

[y, ϕl, ϕ, ẋ, ϕ̇l, ϕ̇] for XTSLIP;

S∗ =
{

[y∗, 90◦, 0, 0] for TSLIP

[y∗, 90◦, 90◦, 0, 0, 0] for XTSLIP.
(1)

Next, the local stability of the fixed points must be
investigated by computing the eigenvalues λ j of the Jacobian
matrix A = ∂F

∂S (S∗) (in our case, A is evaluated numerically). If
the largest eigenvalue (with the maximum magnitude) has an
amount smaller than (or equal to) 1, then the periodic solution
is asymptotically stable (or partially stable). Then, defining
λMax = max j |λ j|, the asymptotically stability condition will
be λMax < 1.

2.3. Virtual pendulum posture control

2.3.1. Virtual pendulum concept for postural stabilization.
The key idea of the VP concept is to create a point of virtual
support (virtual pivot point or VPP) located above the CoM by
redirecting the GRF vector towards this point, at each instant
of the stance phase. Hence, the trunk behavior is transformed,
from an inverted pendulum mounted at the hip to a regular

(a) (b)

Figure 3. (a) Virtual pendulum-based posture control (VPPC)
during the stance phase. (b) Velocity-based leg adjustment (VBLA)
during the flight phase.

VP suspended at the VPP (see [8] for details). In simulation,
the redirection of the GRF vector is achieved by applying a
torque (τ ) at the hip during the stance phase (figure 1(a)),
hence generating a force perpendicular to the leg axis (FN).
We call this approach virtual pendulum-based posture control
or VPPC. For the TSLIP model, as the leg is massless, this
torque is easily computed as

τ = FS l
rCoM sin ψ + rVPP sin(ψ − γ )

l + rCoM cos ψ + rVPP cos(ψ − γ )
, (2)

where rCoM and rVPP are the distance of the CoM to hip and
VPP, respectively, and γ is the angle between VPP and the
trunk orientation (see figure 3(a)). Careful examination of
equation (2) reveals that the computation of τ does not require
information about the absolute trunk orientation ϕ. Only the
force FS and the leg orientation w.r.t. the body ψ are needed.

For the XTSLIP model, the application of a torque to the
leg at the hip does not only translate in a force perpendicular
to the leg axis, but can also result in the acceleration of the
leg with mass. As a result, the expression of τ to redirect
the GRF exactly towards the VPP is more complex than
equation (2). Its derivation is presented in appendix B. The
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computation of τ now generally requires the knowledge of
the full system states, including the absolute trunk orientation
ϕ. Hence, the strict application of the VPPC to the XTSLIP
model drastically increases the requirements with respect
to sensory information. For this reason, we considered two
implementations of the VPPC for the XTSLIP model.

• aVVPC or approximate-VPPC, using the simple
equation (2).

• eVPPC or exact-VPPC, using the exact expression of τ

given by equation (B.2) in appendix B.

Besides the redirection of the GRF towards the VPP,
another aspect of the VPPC is the choice of the VPP position
and its possible adjustment from step to step. Regarding this
latter aspect, we investigated in this paper two approaches,
presented in the following sections.

2.3.2. VPPC with fixed VPP position (VPPC-FP). This is
the simplest case, where the position of the VPP is fixed with
respect to the frame attached to the trunk. To result in an
upright posture of the trunk during steady state hopping, the
VP concept indicates that the VPP must lie on the trunk axis,
or equivalently γ = 0. Hence, only rVPP is used to characterize
the VPP position.

2.3.3. VPPC with event-based control (VPPC-LQR). In this
case, the VPP position is adapted once per period using event-
based control, leading to the improvement of the performance
and robustness of the hopping motion. At each apex, the
new VPP position is computed for the next stance phase
using the current system state. As it will become clear later,
this computation is based on discrete linear quartic regulator
(LQR). Hence, this approach is named here VPPC-LQR.

To design the controller, the Poincaré return map is first
linearized around a nominal fixed point S∗. Note that the map
generally depends on the model parameters and the control
parameters, including the position of the VPP for VPPC as
well as the parameters for the other control tasks. Here, the
latter are taken constant and only the variables parameterizing
the VPP position, i.e. rVPP and γ , are considered as inputs
(index k denotes the variables in the kth apex):

�Sk+1 = AS �Sk + Bγ (γk − γ ∗) + Br (rVPP − r∗
VPP), (3)

with

�Sk = Sk − S∗

=
{

[�yk,�ϕk,�ẋk,�ϕ̇k] for TSLIP

[�yk,�ϕlk,�ϕk,�ẋk,�ϕ̇lk,�ϕ̇k] for XTSLIP

(4)

AS = ∂F
∂S

(S∗, γ ∗, r∗
VPP) (5)

Bγ = ∂F
∂γ

(S∗, γ ∗, r∗
VPP); Br = ∂F

∂rVPP
(S∗, γ ∗, r∗

VPP). (6)

Following the same argument as for the VPPC with fixed
VPP position, the nominal VPP angle γ ∗ must be equal to 0.
Additionally, the vector Br is also equal to 0. Indeed, varying

rVPP has no effect on the motion when the trunk is exactly
vertical, which is the case of the periodic motion corresponding
to the fixed point. The remaining matrices AS and Bγ have the
following form:

AS =
(

λ 0
0 A

)
; Bγ =

(
0
B

)
(7)

in which λ is the eigenvalue of the vertical position dynamics,
and A and B are respectively [n × n] and [n × 1] matrices,
where n = 3 and n = 5 for TSLIP and XTSLIP, respectively.
This indicates that the dynamical model can be decoupled in
the vertical position y, which is not controllable using γk, and
the rest states. Defining

Xk =
{

[�ϕk,�ẋk,�ϕ̇k] for TSLIP

[�ϕlk,�ϕk,�ẋk,�ϕ̇lk,�ϕ̇k] for XTSLIP
(8)

we can rewrite the linear system as{
�yk+1 = λ�yk

Xk+1 = A Xk + B γk.
(9)

Using hopping height control, we can stabilize the first part of
the system by ensuring that λ is smaller than 1 (as described
in section 2.4.2). If the pair (A, B) is controllable, then the
evolution of Xk can also be controlled by using a linear state
feedback law for γk:

γk = −K Xk. (10)

The coefficients of K can be chosen to place the poles of the
resulting close loop system matrix A−BK in desired positions.

In our previous work [13], two methods to select the
coefficients of K were investigated for the TSLIP model,
without hopping height control. We present here only the more
advantageous method, based on optimal feedback control. This
approach allows a smooth convergence of the state variables
to their steady state values. Representing the input γ at the kth
apex with uk, we use discrete LQR [22] with a cost function J
shown in equation (11). The importance of the states and the
input are determined by positive definite (here diagonal) matrix
Q and scalar R when there exists only one input. In discrete
LQR, R could be even equal to zero; then, the only control
target will be minimizing the states that should converge to
zero:

J =
∞∑

k=1

XT
k QXk + uT

k Ruk
R=0�⇒ J = ||WX||22, (11)

where W is a diagonal weight matrix and Q = W TW . Without
R, the gain vector K is given by equation (12), in which P is
a the solution of the discrete Riccati algebraic equation (13).
With a symmetric matrix for Q as defined before, P will be a
symmetric positive definite matrix:

K = (BT PB)−1BT PA (12)

P = Q + AT (P − PB(BT PB)−1BT P)A. (13)

The weight matrix W can be used to give more importance to
the behavior of some of state variables.
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2.4. Leg adjustment

2.4.1. Leg adjustment during the swing phase (VBLA).
Unlike running [12] and walking [4], stable hopping cannot be
achieved with a fixed angle of attack with respect to the ground.
It means that finding an appropriate leg angle adjustment
during the flight phase is needed for hopping in place. Most
leg adjustment strategies rely on sensory information about
the CoM velocity, following the Raibert approach [5] in which
the foot landing position is adjusted based on the horizontal
velocity (for example [23] and [7]). Recently, various strategies
were investigated by Peuker et al [24] who concluded that
leg placement with respect to both the CoM velocity and the
gravity vectors yielded the most robust and stable hopping and
running motions with the SLIP model. In this paper, a modified
version of this strategy is used: the leg direction is given by
vector �O, a weighted average of the CoM velocity vector �V and
the gravity vector �G. The weight of each vector is determined
by coefficient 0 < μ < 1 (see figure 1(b)):

�V = [vx, vy]T ; �G = [0,−g]T

�O = (1 − μ)�V + μ �G. (14)

When μ = 0, the leg is parallel to the CoM velocity vector and,
for μ = 1, the leg is exactly vertical. In [24], only the direction
of the velocity vector was considered. Using its magnitude as
well, the robustness of the method against high perturbations is
increased. In the rest of the paper, we will refer to this strategy
as the velocity-based leg adjustment or VBLA.

In TSLIP, no hip torque during the flight phase is needed
to set the leg angle. With the addition of leg mass in XTSLIP,
a position controller for leg angle is required at the hip joint.
In order to track the desired leg direction, a PD controller
(τ = kp(φl − φd

l ) + kd φ̇l , with φd
l for desired leg angle)

is applied to set the hip torque. In addition, to prevent
high hip torques, we employed saturation with maximum
torque 400 Nm (200 Nm for each leg)4. Although it permits
desirable tracking, the trunk angle will change which should
be compensated in the next stance phase.

2.4.2. Hopping height control. As discussed in section 2.3.3,
with linearizing the system dynamics around the fixed point,
the vertical position dynamics can be decoupled. The goal of
the hopping height control is to stabilize this dynamics, i.e. to
ensure that the absolute value of λ in equation (9) is smaller
than 1. There exist different strategies in hopping height control
using leg rest length and stiffness adjustment like [27, 28] and
[29]. Since changing the leg rest length is easier to implement
on robots, we introduce a simple method to adjust the leg rest
length once in each stance phase (and returning to nominal
value at each apex). This also avoids using time-based (open
loop) techniques [27] or complex solutions which needs many
measurements and actuations [29].

4 Typical hip torque values for human running and one leg hopping are less
than 150 and 60 Nm, respectively [25] and [26]. In perturbed hopping, more
torque is needed to remove the perturbation and for zeroing the velocity.

Assuming the spring-mass model for hopping, the vertical
dynamics for the flight and swing phases of motion are
given in{

ÿ = −g during flight phase

mÿ = −mg + k(l0 − y) − dẏ during stance phase.
(15)

The preferred hopping height in humans [30] is 5 cm. The
desired hopping height (yd) is the desired height of body CoM
at apex. Thus, in order to achieve hopping like humans, this
value is set to 1.125 m according to table 1. The target is to
balance the energy to bring back the body CoM to yd at the
next apex. This may be performed by injecting or absorbing
energy regarding the energy of the system and losses. In this
method, the leg rest length is changed to a new value (ld)
at MLC, based on the value of the leg length at this instant
(noted yc) and the required TO vertical velocity Vto to
reach yd .

For vertical hopping, it is possible to do it in only one
step that means λ = 0, which equivalently realizes dead beat
hopping height control. The leg rest length returns to its initial
length (l0) at the next apex. Solving the differential equation
of the stance phase and using the relation between Vto, ld
and yd result in the following equations that should be solved
numerically (for details see appendix C):

ld = yc + mg

k
− a

√
1 + P2

ld

1 + β2
exp(β(γ − arctan(Pld )) (16)

Pld = β +

vto︷ ︸︸ ︷
s +

√
s2 + 2g(yd − ld )

aω
(17)

in which, s = dg
k , a = mg−dvto

k , β = d
2mω

, γ = arcsin
(

β√
1+β2

)
and ω =

√
4 km−d2

4m2 is the stance motion frequency. Of course,

if d2 � 4 km, the damping is too high to achieve a periodic
motion.

2.5. Evaluation of the controller

The effectiveness of the controller is evaluated with respect to
the following criteria: stability and robustness. As mentioned
in section 2.2.2, the stability of a periodic hopping motion is
evaluated using the eigenvalues of the linearized Poincaré map
around the corresponding fixed point. Asymptotic stability
requires all eigenvalues to be placed inside the unit circle. The
magnitude of the largest eigenvalue λmax can also be used to
characterize the disturbance rejection rate in the vicinity of the
limit cycle, with smaller values being the indicator of faster
disturbance rejection. In addition, the disturbance rejection
ability provided by the different controllers is illustrated by
the transient behavior of the system after the application of
a perturbation of the horizontal velocity ẋ, the trunk angle ϕ

and/or angular velocity ϕ̇ to the model.
For stable hopping, the robustness is evaluated by

quantifying the largest perturbation from which the system
can recover. For this purpose, perturbations of ẋ, ϕ and ϕ̇ are
considered separately. In order to assess the level of stability
(i.e. the convergence to the fixed point after perturbation

6



Bioinspir. Biomim. 8 (2013) 036002 M A Sharbafi et al

occurrence), we define a neighborhood area for the fixed
point. In our experiment with six subjects performing vertical
hopping, the segment kinematics were measured by markers
placed on representative body landmarks using a high-speed
infrared motion capture system (Qualisys with sampling rate
250 Hz). The standard deviation of the horizontal velocity,
the hopping height, the trunk angle and angular velocity at apex
are 3.7 cm s−1, 1.5 cm, 1.16 deg and 6 deg s−1, respectively.
Since our hopping height control is dead beat, a very small
range for apex height is selected. For the remaining parameters,
we define the neighborhood area with ranges about 1.5 times
of the standard deviations in human hopping as An := {X|ẋ <

5 cm s−1, y − y∗ < 0.5 cm, ϕ − 90 < 2 deg, ϕ̇ < 10 deg s−1}.
For defining the robustness, a subset of the neighborhood area
is selected regarding the type of the perturbation. To quantify
the stability of each trial, a 100-step convergence condition for
a specific perturbation is introduced.

Definition 1. 100-step convergence condition: a controller
satisfies the neighborhood condition for a specific initial
conditions set (IC = [ẋ0, ϕ0, ϕ̇0]), if it can move all the states
to the neighborhood area at most in 100 steps and keep them
there afterward.

The tolerable amounts for evaluating the robustness of
controller (C) are computed as follows.

• �ẋmax: maximum ẋ0 that C satisfy 100-step convergence
condition for IC = [ẋ0, 90, 0].

• �ϕmax: maximum �ϕ0 = |ϕ0 − 90◦| that the controller is
able to reduce to less than �ϕ0/10 in 100 steps and satisfy
100-step convergence condition for IC = [0, ϕ0, 0].

• �ϕ̇max: maximum ϕ̇t0 that the controller is able to reduce
to less than 5 deg s−1 in 100 steps and satisfy 100-step
convergence condition for IC = [0, 90, ϕ̇0].

Based on these definitions, the controller with the most robust
hopping is the one with the largest values for tolerable
perturbations. The target investigates the effect of different
parameters such as leg mass, damping, μ and stiffness on
the robustness of the controllers. The maximum perturbations
�ẋmax, �ϕmax and �ϕ̇max are limited to 6 m s−1, 90 deg and
230 deg s−1, respectively. These limits are far beyond the
maximum perturbation applied in human experiments from
which the subjects could recover in few steps. Such high
limits show the ability of the control method in more difficult
situations.

3. Results

In this section, the ability of the proposed control system
to induce stable and robust hopping motion is investigated.
We start with the TSLIP model and show the results,
first for VPPC-FP and then for VPPC-LQR. We apply the
same approach to the XTSLIP, for which we additionally
compare the results for the aVPPC and the eVPPC, both with
event-based control. The influences of the model parameters
(leg mass ml and dimensionless leg damping d̃) are also
investigated.

3.1. TSLIP model

3.1.1. VPPC with fixed VPP position (VPPC-FP). First,
the parameters’ space is explored to find the stable hopping
motions with the nominal hopping height (yd = 1.125 m). For
the controller, the variable parameters are μ and rVPP, as γ is
fixed to zero with VPPC-FP. We also consider the influence of
the leg stiffness on stability, a model parameter that could be
adjusted to improve the hopping performance.

As explained in section 2.2.2, the stability of a periodic
hopping motion is investigated using Poincarre map analysis
and characterized using the λMax, the magnitude of the largest
eigenvalue of the Jacobian matrix of the mapping function.
Figure 4 (left) represents a map of the value of λMax in the
considered parameter space. It shows that, for all three stiffness
values, there exists large parameter regions resulting in stable
hopping (however the eigenvalues are close to one). For all
further analyses with the TSLIP and XTSLIP models, we
choose the intermediate value k̃ = 20.

Next, the robustness of the hopping motions against
perturbation is evaluated. The results are represented in
figure 5, for different values of the controller parameters. It
shows that the system, in addition to being stable, can also be
highly robust against perturbations, but only in a limited range
of parameters. In particular, moving the VPP point away from
the CoM (larger rVPP) appears to improve the performance,
both with respect to stability and robustness.

Although these results show that the controller is able
to stabilize the system and handle large perturbations,
disturbance rejection with VPPC-FP is generally slow. This
could be expected from the values of λMax which are close
to 1, as shown in figures 4 and 5. This situation is illustrated
in figure 6, depicting the system response after simultaneous
perturbations of ẋ, ϕ and ϕ̇. Even for parameter values with
the smallest value of λMax found in figure 5 (rVPP = 0.08 m
and μ = 0.36), more than 95 s are needed to reject 95% of
the perturbation on ϕ. This is the settling time for the time
response.

3.1.2. VPPC with event-based control (VPPC-LQR). As
explained in section 2.3.3, event-based control of the VPP
position (using γ ) allows us to improve the system behavior
by placing the poles of the close loop system matrix A − BK
in desired positions. The only necessary condition is the
controllability of the pair [A, B], which is always satisfied for
this problem. In addition, using discrete LQR for the selection
of the gain vector K, we can use the weight matrix W in
equation (11) to give more importance to some of the state
variables. For our simulation, we set W = diag[8, 1, 1], hence
giving a higher importance to the trunk angle which is the main
control target.

Using VPPC-LQR, periodic hopping motions with
nominal hopping height can be stabilized everywhere in the
parameter space previously considered in figure 4. Comparing
figure 7 to figure 5 reveals that lower eigenvalue λMax are
achieved with this approach. Figure 7 also shows that very
high robustness against perturbations is achieved. In addition,
VPPC-LQR is much more robust against parameter variations,
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Figure 4. The largest eigenvalues’ magnitude λMax of the VPPC-FP controller for ranges of the controller parameters (μ and rVPP) and the
leg stiffness (k̃). In TSLIP, for the stable controllers, λMax is very close to 1. In XTSLIP (d̃ = 0), stable responses have eigenvalues smaller
than TSLIP, but no stability exists for k̃ = 10, (λMax > 1).

(a)

(b) (c) (d)

Figure 5. (a) Stability and ((b), (c) and (d)) robustness against perturbations for the TSLIP with VPPC-FP controller, with respect to
controller parameters μ and rVPP (k̃ = 20).

as the performances are much less dependent on the parameter
values (rVPP and μ) as for VPPC-FP. This is likely related
to the fact that LQR is a robust controller against the model
uncertainties [31].

Finally, the improvements regarding disturbance rejection
are illustrated in figure 6, where the response of the system
after perturbation is shown for VPPC-FP and VPPC-LQR.
For VPPC-LQR, the results for two sets of parameter values

are presented. First, the same parameter set as for VPPC-FP
(i.e. μ = 0.36) were considered for the sake of comparison.
The results show already a considerable improvement of the
response, with respect to the disturbance rejection rate. The
required time to decrease the trunk deviation and horizontal
velocity to less than 5% of their initial values is about 7.5 s.
This time is even less for ϕ̇. For the second parameter set, we
used the values found in figure 7 to result in the smallest λMax

8
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(a) (b)

(c)

Figure 6. The trunk (a) angle, (b) angular velocity and (c) horizontal velocity responses of the system to perturbations for the TSLIP model
with VPPC-FP and VPPC-LQR. The perturbations result in [ẋ0,�ϕ0, ϕ̇0] = [2 m s−1, 20 deg, 50 deg s−1] and rVPP = 0.08 m.

(a)

(b) (c) (d)

Figure 7. (a) Stability and ((b), (c) and (d)) robustness against perturbations for the TSLIP model with VPPC-LQR controller, with respect
to the controller parameters μ and rVPP.

(i.e. μ = 0.25). As expected, the performances were further
improved, with 95% rejection achieved in less than 2 s. In
comparison with VPPC-FP, reduction of the settling time to
8% and 2% was achieved with the first and second parameter
sets, respectively. These results show that introducing event-
based adjustment of γ not only improves the stability, but also

allows for fast disturbance rejection and high robustness with
respect to perturbation and parameter variations.

3.1.3. Comparison of VPPC–LQR with HZD controller.
To investigate the quality of the proposed approach, we
implemented HZD (Hybrid Zero Dynamics) control method

9
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(a) (b)

(c)

Figure 8. Comparison between VPPC-LQR and HZD for trunk stabilization for TSLIP model. The perturbations result in
[ẋ0,�ϕ0, ϕ̇0] = [2 m s−1, 20 deg, 50 deg s−1].

for hip torque as an alternative [32]. Using this method,
the difference of the trunk angle from upright position is
considered as the output which should become zero. This is
done by feedback linearization which reduces the stability
problem of the complete system to analyzing the stability of
the zero dynamics. With precise measurement and knowing
the exact model, HZD could have the highest tracking
performance with exponentially stable properties. Thus, it is
considered as a reference for assessing the performance of the
method. The quality of HZD control compared with VPPC-
LQR is shown in figure 8. It is observed that convergence to
upright position and zeroing the trunk angular speed is faster
than VPPC-LQR with less oscillations, but the horizontal
velocity becomes zero slightly slower. General behaviors of
these two methods are comparable, but the HZD controller is
more complex and needs a precise model and more sensory
information.

3.2. XTSLIP

In this section, stability, robustness and disturbance rejection
performances of the proposed approaches are presented for the
XTSLIP model. The main difference between this model and
the TSLIP model is the relaxation of the simplifying modeling
assumption that the mass of the leg can be neglected. For this
reason, we first investigate shortly how the introduction of
mass in the leg influences the stability behavior.

3.2.1. Influence of the leg mass. To investigate this point, we
considered a series of intermediate models, with the leg mass

and leg inertia increasing from zero, as in the TSLIP model,
to their values in the XTSLIP model. The mass and the CoM
position of the trunk were adapted in order to keep constant the
total mass and CoM position when standing. For each model,
we investigated the stability and the robustness.

The results of this investigation are presented in figure 9
for VPPC-LQR (note that we found the same tendencies for
VPPC-FP). The controller parameters μ and rVPP were kept
constant to allow for fair comparison between the models. On
the one hand, increasing leg mass ratio (p = ml

m ) results in the
degradation of the robustness against perturbation. This was
to be expected because the increase of the leg mass, combined
with the saturation of the hip torque, limits the speed of the leg
adjustment and consequently impacts the action of the VBLA.
In addition, the action of the VBLA during the swing phase
produces a counteracting torque on the trunk. This increases
in turn the perturbation of the trunk orientation that the VPPC
must deal with. On the other hand, figure 9 shows a small but
consistent improvement of the stability.

3.2.2. VPPC with fixed VPP position (VPPC-FP). Because
of two aforementioned reasons the stability region is smaller
after the addition of mass to the leg in figure 4 (right).
For k̃ = 10, no stable region at all is found in the whole
range investigated for μ and rVPP. Nevertheless, comparing
this figure with figure 4 (left) shows that for stable regions,
in XTSLIP the eigenvalues are less than in TSLIP. This is
reflected by the eigenvalues shown for k̃ = 20 and rVPP = 0.05
in figure 10. The robustness against perturbations is less than

10
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(a)

(b) (c) (d)

Figure 9. Influence of the leg mass/inertia ratio (p) on (a) the stability and (b), (c) and (d) robustness against perturbations for VPPC-LQR.
(μ = 0.29, d̃ = 0 and rVPP = 0.05).

(a)

(b) (c) (d)

Figure 10. (a) Stability and ((b), (c) and (d)) robustness against perturbations for the XTSLIP model w.r.t the control parameter μ. (k̃ = 20,
rVPP = 0.05 and d̃ = 0).

11



Bioinspir. Biomim. 8 (2013) 036002 M A Sharbafi et al

Figure 11. Comparison of (a) trunk angle, (b) leg angle and (c) horizontal velocity between VPPC-FP and VPPC-LQR in time domain. The
perturbations result in [ẋ0, �ϕ0, ϕ̇0] = [3 m s−1, 30 deg, 50 deg s−1]. For VPPC-FP and VPPC-LQR, μ is equal to 0.27 and 0.29,
respectively and d̃ = 0.1.

that in TSLIP controlled by VPPC-FP, but it is considerable.
The best performance (the lowest eigenvalue and the largest
tolerable perturbations) is achieved for μ = 0.27. Similar
trends (with minor changes) are observed when damping
is nonzero. The time responses for the horizontal velocity,
and the leg and trunk angles are displayed in figure 11
when the damping ratio is 10% (d̃ = 0.1). It is shown that
all the perturbations are removed within 15 s. It is predicted
that with mass and inertia in the leg, convergence to stable
vertical hopping is faster. The observed oscillations resulted
from applied torque for leg adjustment during the flight phase.

3.2.3. VPPC with LQR (VPPC-LQR). To emphasize the
significance of trunk angle the weights are selected as W =
diag[0, 8, 1, 0, 1] like in TSLIP. Similar to the TSLIP model,
using VPPC-LQR guarantees stability in the whole considered
parameter domain. Figure 11 shows better performance of
VPPC-LQR with respect to the original VPPC-FP. It removes
all perturbations in only 2 s. The aVPPC as the simplified
version of the proposed controller VPPC-LQR is perfect in
diminishing perturbations.

In order to investigate the effect of this simplification,
the robustness of aVPPC and eVPPC was compared (see
figure 10). In this section, the robustness of the controlled
motion against perturbations is evaluated for different system
parameters. It is shown that aVPPC has the same eigenvalues
and similar robustness as the exact controller for XTSLIP.
In spite of robustness reduction compared with the TSLIP

model, it is sufficient for perturbed hopping. To find the
best compromise between robustness and fast convergence
to periodic motion, we selected μ = 0.29 for evaluation in
time domain (see figure 11). For this value, the perturbations
exerted in figure 11 are near their maximum tolerable ones. It
shows that the controller works well when all perturbations
happen together and mass and damping exist in the
leg (figure 1(b)).

Finally, damping effects on control are evaluated when
the other parameters are fixed and μ is optimized for
the model without damping5. The results are displayed in
figure 12. It shows that the eigenvalues are mostly increased
with increasing the damping. So the convergence becomes
slightly slower with higher damping. For horizontal velocity
perturbations (figure 12(a)), the robustness reduces with
damping, whereas for the trunk angle and angular velocity
(figures 12(c) and (d)), the effect of damping on robustness
is less monotonic. It is not significant and the system
is sufficiently robust against perturbations even with high
damping coefficients. In all the results for robustness and
eigenvalues, strict implementation of VPPC only results in
a slight increase of the robustness. Hence, the approximate
implementation of VPPC is efficient, especially because it
requires less sensory information.

5 With other values (e.g. μ = 0.26 which gives the minimum eigenvalue for
d̃ = 0.1) minor differences are observed in the results.
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Figure 12. Comparison between aVPPC, eVPPC and VPPC-FP with respect to (a) stability and (b), (c) and (d) robustness against different
perturbations dependent on the damping coefficient (d̃) for XTSLIP model. The normalized damping ratio values are presented in percent,
e.g. 10% means d̃ = 0.1. (μ = 0.27 and rVPP = 0.05).

4. Discussion

Hopping is a fundamental requirement for running in two
basic functions: bouncing and balancing. In addition, for robust
hopping against perturbations, swinging the leg in the flight
phase is observed. Three different approaches are presented to
perform robust hopping. First, leg length adjustment is applied
for stable bouncing with a nominal hopping height. Second,
VPPC is utilized for balancing that tries to keep the trunk in
upright position. Finally, VBLA is the proposed technique for
swing leg adjustment.

For the SLIP model, VBLA and hopping height control
are able to remove any perturbations at most in two steps. A
comparison between VBLA, Peuker’s and Raibert’s approach
with respect to human leg adjustment in perturbed hopping
was presented recently [33]. Among these approaches, VBLA
showed the most robust behavior with fewest required
parameters. In the SLIP model extended with trunk, leg mass
and damping, balancing turns out to be the most significant
task.

It is remarkable that VPPC-FP (with fixed VPP) could
create stable hopping with upright trunk without measuring
the trunk orientation. However, it is very slow in disturbance
rejection and not very robust against parameter changes.
Adaptation of the VPP position via event-based control not
only results in faster convergence to periodic vertical hopping
(because of smaller eigenvalues), but also increases the
robustness against perturbations and uncertainties. With this
approach, it is possible to achieve stable hopping in the whole
investigated parameter region, because stability is guarantied
by the controller design. This gives the freedom to select the
value of the model parameters, such as the leg stiffness, to reach

other objectives, including minimizing energy consumption or
satisfying constraints on the maximal torque.

Different approaches to adjust the VPP point using
feedback control were investigated in [13]. Amongst them,
LQR as an optimal control approach offered the best trade-
off between convergence rate and reduction of the response
overshoot. In addition, this method offers the possibility of
adjusting the controller behavior with the weight matrix W , in
order to prioritize disturbance rejection for a specific system
state. Regarding sensory information, the only cost for all these
benefits is to measure or estimate the system state at apex.
Event-based control also requires a linear map of the apex-to-
apex behavior of the model, around a desired hopping motion,
but it can be computed offline and once for each nominal
hopping condition.

Adding mass and damping to the leg makes the model
more realistic and influences the performance of all control
layers. Large hip torques may be needed to track the desired
leg angle in the flight phase and disturb the trunk orientation
which needs to be compensated during the stance phase.
Another consequence is that the equation governing the hip
torque, required to redirect exactly the GRF towards the VPP,
becomes much more complex and requires the knowledge of
the system state during the stance phase. However, we found
out that using the simpler relation, previously employed for
the TSLIP model, and which is only an approximation for the
XTSLIP model, leads to the comparable results as the exact
one. Therefore, we could keep both the simplicity and quality
of the control approach with the more complex model.

HZD is another control approach utilized to keep the
trunk upright (instead of VPPC) in hopping and running with
TSLIP model [34]. Although this method results in very small
eigenvalues and fast convergence rate, it requires a precise
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model of the system and the knowledge of the system state
during the stance phase. Hence, for more complicated models
(such as the XTSLIP), it results in an increased complexity of
the controller, while this was not so critical in our approach
(using aVPPC). In addition, VPPC-LQR can produce similar
performance with lower complexity and less required sensory
information. Therefore, with respect to other control methods,
the main benefit of our approach is the ability to achieve robust
behavior with limited efforts, in terms of parameter tuning,
model accuracy and sensory feedback.

The proposed controller was able to reject very large
perturbations, such as changes in the horizontal speed by
3 m s−1, in the trunk angle by 50◦ and in the angular velocity
by 80 deg s−1. This holds even if all these changes happen
simultaneously (figure 11). High robustness against variations
of damping, leg mass and even the control parameters for
VBLA support the application of the controller in practice.

The VPP concept was shown to be relevant not only in
human locomotion but also for animals (e.g. bird running).
This demonstrates that the underlying mechanical concept may
be applied to different body morphologies or robot designs.
Preliminary simulation results for a model corresponding to
the specific robot design show that this controller is robust
and easy to adapt. There are several potential extensions of
this control approach. One extension would be to apply it to a
model with segmented legs. Then, the posture control will not
just be realized at a single joint level (e.g. hip joint). In order
to employ similar control schemes as presented in this paper,
it would be required to map the joint space of the segmented
leg to the virtual leg axis as described by the XTSLIP model.
There are many approaches to produce this projection, such as
virtual model control [35] or SLIP-embedding approach [7].
Another option can be using a set of differentials to create a
virtual prismatic leg between the hip and the toe to control
the virtual leg (length and angle) with respect to the trunk via
different actuators [18].

Appendix A. Derivation of the equations of motion
for the XTSLIP model

We derive the equations of motion of the system by using
an approach, sometimes called the TMT method, that yields
equations equivalent to the Lagrange equations but with the
system matrices in a factorized form. This facilitates the fast
numerical simulation of the system. The equations of motion
when the system is in the flight phase can then be written as
follows:

T T MT q̈ + T T MD = T T [G + H + �] (A.1)

with

q = [x, y, ϕl, ϕ]T (A.2)

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 rleg sin ϕl 0
0 1 −rleg cos ϕl 0
0 0 1 0
1 0 0 −rCoM sin ϕ

0 1 0 rCoM cos ϕ

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ ;

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

rleg cos ϕl ϕ̇l
2

rleg sin ϕl ϕ̇l
2

0
−rCoM cos ϕt ϕ̇2

−rCoM sin ϕt ϕ̇2

0

⎤
⎥⎥⎥⎥⎥⎥⎦ (A.3)

M = diag([ml, ml, Jl, mt, mt, Jt]);
G = −g.[0 , ml , 0 , 0 , mt , 0]T (A.4)

H = [Fleg cos ϕl, Fleg sin ϕl, 0, 0, 0, 0]T ;
� = [0, 0, τ, 0, 0, −τ ]T , (A.5)

where x, y, ϕl , ϕ and Fleg are respectively the horizontal and
vertical positions of the hip, the orientations of the leg and the
trunk and the leg force. The other symbols refer to parameters
that were defined in table 1.

During the stance phase, the contact of the foot with the
ground constrains the motion of the system. This is achieved by
using the Lagrange multiplier approach, hence, by introducing
an explicit constraint force in the equations of motion and
appending the additional equation describing the constraint. In
this case, the constraint force is essentially the ground reaction
force applied in the direction perpendicular to the leg axis
(as the leg is free to compress along the leg axis, due to the
presence of the spring). Using the notations A = T T MT and
B = T T [MD − G − H], the constrained equations of motion
are written as {

Aq̈ + B = T T � + JT FN

Jq̈ + C = 0
(A.6)

with

J = [sin ϕl, − cos ϕl, sin(ϕl ) (y − y f ) + cos ϕl (x − x f ), 0]

(A.7)

C = 2 ϕ̇l ẋ cos ϕl + 2 ϕ̇l ẏ sin ϕl − ϕ̇l
2 y f cos ϕl

+ ϕ̇l
2 y cos ϕl + ϕ̇l

2 x f sin ϕl − ϕ̇l
2 x sin ϕl, (A.8)

where x f and y f are respectively the horizontal and vertical
positions of the contact point of the foot with the ground and
FN is the component of the GRF perpendicular to the leg axis.

Appendix B. Derivation of the eVPPC equations for
the XTSLIP model

To implement the eVPPC approach, we want to compute the
hip torque τ that will produce the desired FN that will redirect
the GRF vector towards the VPP. After the manipulation of
equation (A.6), we have

E� = −C + JA−1B − JA−1JT FN (B.1)

with E = JA−1T T . As E is a vector and given the form of
�, the hip torque τ for eVPPC with the XTSLIP model is
given by

τ = (−C + JA−1B − JA−1JT FN )/(E(3) − E(6)) (B.2)
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Appendix C. Derivation of hopping height control
equations

The leg rest length is adjusted at maximum leg compression
point; then, we initiate the motion from this moment (t = 0).
The target is finding desired leg rest length that the vertical
hopper with compressed length yc reaches the desired height
yd at the next apex. Then, the border conditions to solve the
motion equation versus time at stance phase will be as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
y(0) = yc

ẏ(0) = 0

}
initial conditions

y(tto) = ld − dvto/k
ẏ(tto) = vto

}
take off conditions,

(C.1)

where tto and vto are the time and velocity at TO (when the
leg reaches its rest length with positive velocity), respectively.
According to conservative (ballistic) motion in the flight phase,
equality of energy at TO and apex results in
1
2 mv2

to = mg(yd − ld + dvto/k)⇒ vto = s +
√

s2 + 2g(yd − ld )

(C.2)

For d2 < 4 km, the response of the differential equation (15)
is obtained as

y(t) = e−βωt (α1 sin(ωt) + α2 cos(ωt)) + ld − mg

k
, (C.3)

where α1 and α2 are computed using the initial conditions at
t = 0 by the following relations:⎧⎨

⎩α2 = yc − ld + mg

k
α1 = βα2

(C.4)

otherwise, it never reaches the rest length and the mass stops
where the weight is equal to the spring force. From the border
conditions at TO, two relations are obtained for ld and tto:⎧⎪⎨
⎪⎩

mg−dvto

k = e−βωtto(α1 sin(ωtto) + α2 cos(ωtto))

vto = ω e−βωtto(−(α1β + α2) sin(ωtto)

+ (α1 − α2β) cos(ωtto)).

(C.5)

Defining a = mg−dvto

k and using the relation between α1 and α2

in (C.4) with some manipulations, (C.5) results in⎧⎨
⎩α2 = a eβωtto

β sin(ωtto) + cos(ωtto)
vto = α2ω e−βωtto(β sin(ωtto) − aβω);

(C.6)

then,
Pld︷ ︸︸ ︷

β + vto

aω
= β cos(ωtto) − sin(ωtto)

β sin(ωtto) + cos(ωtto)
. (C.7)

Let γ = arcsin
(

β√
1+β2

)
, which results in tto = γ−arctan(Pld )

ω
.

Putting tto in (C.6) gives

α2 = a exp(β(γ − arctan(Pld )))

√
1 + P2

ld

1 + β2
. (C.8)

Finally, from (C.4) which give ld = yc + mg
k − α2, the desired

values for the leg length is

ld = yc + mg

k
− a

√
1 + P2

ld

1 + β2
exp(β(γ − arctan(Pld )). (C.9)
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