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Abstract— This paper presents a new control approach to
achieve robust hopping with upright trunk in the sagittal
plane. It relies on an innovative concept for trunk stabilization,
called Virtual Pendulum concept, recently proposed, based on
experimental finding in animal locomotion. With this concept,
the trunk is stabilzed by redirecting the ground reaction force
to a virtual support point, named Virtual Pivot Point (VPP).
This concept is combined with a new leg adjustment scheme to
induce stable hopping when an extended trunk is added to SLIP
model. The stability is investigated by Poincaré map analysis.
With fixed VPP position, stability, disturbance rejection and
moderate robustness are achieved, but with low convergence
speed. To improve the performances and attain higher ro-
bustness, event based control of VPP position is introduced,
using feedback of the system state at apex. Dead beat control
and Discrete LQR are alternatively considered to adjust the
feedback gains. In both cases, considerable enhancements with
respect to stability, convergence speed and robustness against
perturbations are acheieved.

I. INTRODUCTION

The ability to perform efficient and robust locomotion is
a crucial condition for the massive use of legged robots in
real world applications. In that respect, robots can learn from
animals, if the principles underlying locomotion in biological
legged systems can be transfered to their articifial counter-
parts. A great progress in this direction was introducing
simple models, coined “templates” [1], able to represent
the overall dynamics of animal gaits. One of the most
famous models is spring-loaded inverted pendulum (SLIP)
[2][3] which consists of a point mass atop a massless spring
and provides a good description of human gaits, such as
walking [4], hopping and running [2]. Despite its high level
of abstraction, it supported and inspired the development of
successful legged robots [5][6] or was used as explicit targets
for control [7], over the years.

However, as the upper body is represented by a point mass,
stabilization of the upright posture (or posture control) in
robots or humans cannot be addressed with this template. For
that purpose, the SLIP must be extended to include a model
of the upper body. With such models, various methods for
posture control have been proposed. However, most of them
rely on the same principle, i.e. the feedback control of the
trunk orientation with respect to an absolute referential frame
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[SI[71[8]. Recently, Maus et al. [9] proposed an innovative
concept for posture stabilization, coined Virtual Pendulum
(VP), based on observations in a variety of animals including
humans. It relies on the creation of a virtual support point
(VPP), placed above the center of mass. This is achieved by
redirecting the ground reaction force (GRF) vector towards
this point, needles to know the trunk absolute orientation.
This approach was validated in simulations, where it yielded
stable upright walking and running patterns [10].

In this paper, we apply this concept to achieve robust
hopping, defined by running with zero forward velocity. In
contrast to running [11], hopping cannot be stabilized by
placing the leg at a given fixed angle with the ground. Hence,
we have to introduce a control layer adjusting the leg angle
during the swing phase which was not considered in former
studies dealing with VP-based control [10][9].

In previous implementations of the VP concept, the VPP
was always fixed in the referential frame attached to the
trunk. In this way, posture could be stabilized but the
convergence to steady state is slow and the robustness against
perturbations is only moderate. Previous investigations also
showed that placing the VPP out of the trunk axis could
be used for maneuver [10] or compensation of energy losses
[12]. In the present study, we use a similar approach to solve
the issues regarding disturbance rejection and robustness.
With the VP concept, the complex process of generating a
suitable hip torque pattern is simplified to the specification
of the position of one point. Hence, it is particularly suited
for the application of event-based control. It is performed by
a feedback law using the states at the apex event in order to
adjust the VPP position during the next stance phase. Two
design strategies are described in Sct. II, beside simulation
model and a short presentation of the VP concept. In Sct.III,
the results are presented for different controllers. Finally,
Sct.IV discusses the benefits and costs of the extension of
the original approach and gives an outline of the future work.

II. METHODS
A. Simulation model

Our simulation model (TSLIP' for Trunk-SLIP) is an
extension of the traditional SLIP, where the point mass
is replaced by a trunk, as represented in Fig.1-left. The
model parameters (given in Table I) are set to match the
characteristics of a human.

'In [13] a similar model was introduced namely ASLIP, for “Asymmetric
SLIP”. However, as this term can also designate a SLIP model with
asymmetric leg properties, we prefer to use the appellation TSLIP.
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Fig. 1.
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Left: TSLIP model with a rigid trunk and a leg modeled as a massless prismatic spring with parameters of Table I. Middle: Velocity-based leg

adjustment (VBLA) during flight phase. Right: Virtual pendulum-based posture control (VPPC) during stance phase.

During the stance phase, the force generated along the
leg axis is given by: Fs = k (lp — 1), where I, |y and
k are respectively the current leg length, leg rest length
and the spring stiffness (for convenience, we define the
dimensionless leg stiffness k = kg /myg that is used hereafter
instead of k). A torque can be applied at the hip to stabilize
the posture of the trunk. Liftoff occurs when the leg reaches
its rest length. During the flight phase, the leg orientation
can be arbitrarily adjusted (as the leg is massless).

B. System analysis

The model is investigated using Poincaré return map
analysis. Assume that z, y and ¢ are respectively the center
of mass (CoM) horizontal and vertical positions and the trunk
orientation. Then, the event used for the Poincaré section
is the apex, characterized by y = 0 with § < 0. Using
this definition, the system state at apex is described with the
reduced? state vector: S = [y, @, &, ¢]. The Poincaré return
map F between two consecutive apices is thus defined by
Sk+1 = F(S). Periodic hopping motions correspond to the
fixed points of F (i.e. S* such that S* = F(S*)) with general
form: S* = [y*,90°, 0, 0]. Hereafter, nominal hopping height
y* = 1.125 m (i.e. the foot is 2.5 cm above the ground at
apex), which corresponds to the preferred hopping height
in human [14], is considered for hopping motion. The local
stability of a periodic motion is investigated by computing
the eigenvalues A; of the Jacobian matrix A = g—g(s*),
evaluated numerically. As the leg is a perfect spring, the
periodic motion is always neutrally stable w.r.t hopping
height (y*) changes, characterized by an eigenvalue equal
to 1. We consider that the periodic motion is stable if the
other eigenvalues are smaller than 1.

The transient behavior of the system is investigated by
applying perturbations of the horizontal velocity and the
trunk angle to the model. The robot is dropped from the

2The absolute horizontal position x is omitted because it does not
influence the evolution of the system from one apex event to the next.

TABLE I
MODEL PARAMETERS

fixed parameters symbol | value [units]
trunk mass m 80 [kg]
trunk moment of inertia J 4.58 [kg m?]
distance hip-CoM TCoM 0.1 [m]
leg rest length lo 1 [m]
variable parameters symbol [units]
leg stiffness k [-]
distance CoM-VPP Tvpp [m]

leg adjustment parameter o [-]
VPP angle o [deg]

nominal hopping height with initial horizontal speed &y # 0
and/or trunk angle ¢y # 90°. The same approach is used
to evaluate the robustness of the stable hopping motions.
Each type of perturbation is then applied separately and the
tolerable amounts are computed as follows:

o AZpqr: Mmaximum o that the controller is able to
reduce to less than 0.05 m/s in 50 steps.

o AQpae: maximum Ay = |pg—90°] that the controller
is able to reduce to less than Apy/10 in 50 steps.

C. Leg adjustment during the swing phase

Unlike running [11] and walking [4], the simplest leg
placement strategy (i.e. with a given pre-defined angle of
attack with respect to the ground) cannot yield stable hopping
motion. This requires the adjustment of the leg orientation
during the flight phase. Most leg adjustment strategies rely
on sensory information about the CoM velocity, following
the approach pioneered by Raibert in which the foot landing
position is adjusted based on the horizontal velocity [15].
Recently, various strategies were investigated by Peuker et
al. [16]. The most robust strategy for hopping and running
with SLIP model, was placing the leg with respect to both
the CoM velocity and the gravity. In this paper, a modified
version of this strategy is used: the leg direction is given by
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vector O as a weighted average of the CoM velocity vector
V (in dimensionless form) and the unitary gravity vector G.

‘Z = [Ui??vy} H/\/al‘ G = [01 _1] (1)
O = (1—pV+uG

The portion of each vector is determined by coefficient 0 <
< 1 (see Fig.1-center). When p = 0, the leg is parallel to
the CoM velocity vector and, for p = 1, the leg is exactly
vertical. In the rest of the paper, we will refer to this strategy
as the Velocity-Based Leg Adjustment or VBLA.

D. Virtual pendulum concept for postural stabilization

The key idea of the VP concept is to create a point of
virtual support (virtual pivot point or VPP) located above
the CoM by redirecting the GRF vector towards this point,
at each instant of stance phase. Hence, the trunk behavior is
transformed, from an inverted pendulum mounted at the hip
to a regular virtual pendulum suspended at the VPP (see [9]
for details). The VP concept is implemented in the simulation
model by applying a torque (7) at the hip during the stance
phase (Fig.1-right). This generates a force perpendicular to
the leg axis (Fy) and the torque needed to redirect the GRF
towards the VPP can be computed by:

Teom SIT '¢ + Tvep Sm(d) - '7)
L4 Tean €08 U + Typp cos() — )

We call this approach: Virtual Pendulum based Posture
Control or VPPC. As shown in Eq. 2, it does not require
information about the absolute trunk orientation ¢ (only the
force Fs and the leg orientation w.r.t. the body ¢ are needed).

1) VPPC with fixed VPP position (VPPC-FP): In the
original implementation of the VPPC [9], the VPP position
is held constant. Since trunk posture in hopping should be
upright, from the concept of virtual pivot, v must be zero, i.e.
the VPP must lie on the trunk axis. Hence, only 7, is used
to characterize the VPP position. We refer to this controller
as VPPC-FP.

2) VPPC with Event-based Control: To improve the per-
formance and robustness of the hopping motion, we intro-
duce event-based control. In this method, at each apex, the
VPP position is adapted for the next stance phase using the
current system state. To design the controller, the Poincarre
return map is linearized around a nominal fixed point S*,
while considering ry;, and ~y as inputs:

r=Fsl )

ASp1 = Ag ASy + B, (e — 7*) + B, (rver — VPP) 3)
with:
AS, =S, —S* = [Ayzw Ay, Ay, A‘Pk] 4)
8F * * *
.AS - ais(s Y 7rVPP) (5)
OF o . . . OF . .,
B'y - ai’y(s 7’7 7TVPP) ’ BT - 8Tvpp (S 5'7 7TVPP) (6)

Following the same argument as for the VPPC with fixed
VPP position, the nominal VPP angle v* must be equal to
0. Additionally, the vector B, is also equal to 0. Indeed,

varying 7y has no effect on the motion when the trunk is
exactly vertical (the model configuration corresponding to
the fixed point). The remaining matrixes Ag and B, have
the following form:

(3 4) ee(s) o

where A and B are respectively [3x3] and [3x 1] matrixes.
This indicates that, in the first order, the evolution of the
vertical position is decoupled (hence not controllable using
~i) and neutrally stable. Defining Xy = [Agk, AZg, Ak,
we can rewrite the linear system as:

Aypr1 = Ay
Xiy1 = AXp+ By

If the pair (A, B) is controllable, the evolution of X, can
be controlled by using a linear state feedback law for vg:

e =—K X )

(®)

Two methods, investigated in this paper to select the coeffi-
cients of K are described in the following.

a) Dead-beat control (VPPC-DB): For discrete linear
systems, the control policy that brings the output to the
steady state in the minimum number of steps is called dead-
beat control. It is achieved when all the poles of the transfer
function are at the origin. We use the same approach here
by choosing the elements of K to set all the eigenvalues of
the system matrix A — BK to zero.

b) Discrete LOR (VPPC-LQR): Dead-beat control aims
at cancelling the disturbance as fast as possible, but does
not consider the behavior of the system during the transient
phase. Hence, with such approach, a smooth convergence
of the state variables to their steady state values is not
guarantied. This can be achieved by using optimal feedback
control. Here, we use Discrete LQR [17], with a cost function
J that only consider the output error:

(o)
J= WXl = > XIQX, (10)
n=1
where W is a diagonal weight matrix and Q = WTW.
The optimal gain vector K is given by Eq. 11, in which P
is a symmetric positive definite matrix, the solution of the
discrete Riccati Algebraic Equation (Eq.12).

K =(BTPB)"'BTPA
P=Q+ A" (P-PB(BTPB)"'BTP)A

(1)
(12)

The weight matrix W can be used to give more importance
to the behavior of some of state variables.

III. RESULTS

In this section, the stability and robustness of different
aforementioned controllers are compared. As a standard
platform, TSLIP dynamical model for hopping with pa-
rameters of Table I is simulated in MATLAB/SIMULINK
2011b using ode45 solver. The main analyzing method for
stability is investigating eigenvalues of Poincaré return map.
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Fig. 2. Stability of the hopping motion with nominal hopping height
for VPPC-FP with different parameter values. The color bar shows the
magnitude of Az

Additionally, characteristics of time response are employed
in order to evaluate the robustness.

A. VPPC with fixed VPP position (VPPC-FP)

To find stable hopping motions with sufficient robustness,
the parameter space is explored. The controller parameters
are limited to p and 7y, when in hopping with fixed VPP,
~ must be zero (from the concept of virtual pivot). We also
consider k as a variable parameter, that could be adjusted to
improve the hopping performance.

First, the stability of the controlled system with nomi-
nal hopping height (as defined with y* in Sct. II-B), is
investigated. For that purpose, we consider the magnitude
of the largest effective (not neutral) eigenvalue (\,,4.). In
Fig. 2, the results for three stiffness values are represented.
It shows that stable hopping is achieved in a large parameter
region. However, these motions associate with relatively high
eigenvalues (greater than 0.8) which is not desirable.

Next, we evaluate the robustness of the hopping motions
with the stiffness value & = 10 for which a large stable region
with the highest convergence rate (i.e. the lowest eigenvalues)
is found. The results are represented in Fig. 3, for different
values of the two other parameters (7yp, and p). It shows that
there is a trade-off between performance and robustness, as
choosing 7 to reduce the settling time (smaller eigenvalues)
results in lower robustness.

To illustrate the response of the system after perturbation,
we select rypp = 0.08 m and g = 0.5 which makes a
compromise between convergence rate (Ap;q, = 0.865)
and robustness. Fig. 4 displays the behavior of the trunk
angle and horizontal speed for two different perturbations.
As expected from the magnitude of \,,,,, the convergence
to the steady state is slow. Oscillations of the trunk angle
subsists up to 15 s after the occurrence of the perturbation.

B. VPPC with Event-based Control

Event-based control allows to improve the system behavior
by placing the poles of the matrix A — BK in desired posi-
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Fig. 3. Stability and robustness for VPPC-FP with k = 10. The results

are represented for three values of rypp.
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Fig. 4. Responses for VPPC-FP with [k, u, rvee] = [10,0.5,0.08] after
perturbations of the initial horizontal velocity (o = 1 m/s, dashed line) and
the initial trunk angle (o = 70°, solid line). Apex events are displayed
with the * symbol.

tions, if the pair [A, B] is controllable. The latter condition
is satisfied in whole of the parameter space, considered in
Fig. 2. Hence, the stability of the hopping motion does not
depend on the selection of specific model parameters and can
be guarantied by proper controller design. It means that some
parameters like stiffness could be adjusted to satisfy other
performance indexes like energy consumption. Additionally,
because the response to perturbations is very less sensitive
to parameters variations, the results are illustrated only for
one set [l%,u,rvpp] = [20,0.5,0.01]. Stiffness and ry are
applied as controller designing parameters, but to compare
only the results of posture stabilization, p is selected similar
to VPPC-FP.

On the other hand, the performance of the controller
depends on the accuracy of the system description provided
by matrixes A and B. These are computed for a given fixed
point Sg. While the system is neutrally stable with respect
to the hopping height, after occurrence of the perturbation,
the system may converge to another fixed point S} with
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Fig. 5. Responses for VPPC-DB for [0, Agpo] = [1 m/s, 20°] and initial
hopping height set to the nominal value. The solid and dashed lines are the
responses with and without final fixed point estimation, respectively. Apex
events are displayed with the * symbol.
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Fig. 6. Stability and robustness for VPPC-DB with k = 20. The results are
represented for three values of 7ypp. For the evaluation of the robustness,
estimation of the final fixed point is used systematically.

a different hopping height. As the controller is designed
utilizing the linear map derived for S§ and not Sj, its
performances will differ from the expected ones. This is
especially a concern when large perturbations occur that
change the system energy. To solve this problem, the system
state after perturbation is used to estimate the final hopping
height, by Eq. 13.

yr = yo + (&5 + Jo5/m) /29 (13)

where subscript 0 indicates the values of the state variables
at the apex, following the perturbation. The Poincaré map is
then linearized around the estimated final fixed point S% =
[yfv 7T/27 0, 0]

1) Dead-beat control (VPPC-DB): The response of the
system after large perturbation of both the initial speed
and the trunk angle is represented in Fig. 5. This shows a
considerable improvement of the response, especially with
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Fig. 7. Responses for VPPC-LQR for [%0, Apo] = [1 m/s, 20°] and initial
hopping height set to the nominal value. The solid and dashed lines are the
responses with and without final fixed point estimation, respectively. Apex
events are displayed with the * symbol.
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Fig. 8. Stability and robustness for VPPC-LQR with k = 20. The results
are represented for three values of 7ypp. For the evaluation of the robustness,
estimation of the final fixed point is used systematically.

respect to the speed of disturbance rejection. With VPPC-
DB, it takes less than 3s to vanish the disturbance in
comparison with 15 s which was required for VPPC-FP.
Using the linearized map around the fixed point with initial
hopping height y, (dashed line), lightly damped oscillations
remains after ¢ = 3 s. This illustrates the alteration of
the desired controller performance, since the states converge
to a fixed point, different from one which is employed to
design the controller. When the estimation of the final fixed
point (with hopping height y ) is used, final oscillations are
removed and the behavior of the system is close to dead-beat
response, as expected (solid line).

In Fig. 6, the results regarding the stability and robustness
of the controller for three values of 7., are displayed.
The controller design insures that the maximum eigenvalue
is equal to zero. With © = 0.44 and 7y, = 0.01 m,
the controller is generally very robust and has the ability
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to stabilize the system even with initial perturbations of
9 = 8 m/s and Ayy = 90°. Low 7y values improve
the robustness against horizontal velocity perturbations, in
contrast with trunk angle perturbations.

2) Discrete LOR (VPPC-LQR): Although fast conver-
gence to steady-state was attained with VPPC-DB, large
overshot was observed during the transient phase, especially
for the trunk angle (Fig. 5). VPPC-LQR prevents this,
while preserves the fast convergence, as shown in Fig. 7.
Weight matrix W with diagonal elements [8, 0.5, 0.5] is used,
giving higher importance to the trunk angle. The controller
performance seems also less affected by the discrepancy
between initial (dashed line) and final (solid line) hopping
heights. These results could be related to this fact that LQR
is a robust controller against the model uncertainties [18].
Finally, the robustness against trunk angle perturbation is
greatly improved (Fig. 8).

IV. DISCUSSION

The results show that our approach combining VPPC dur-
ing stance phase and VBLA during flight phase qualified to
make a stable hopping with upright trunk. The original VPPC
implementation (VPPC-FP) is able to stabilize hopping in
a large parameter region and to provide robustness against
moderate perturbations. This achievement is remarkable,
while this method does not explicitly control the trunk
orientation or even uses information about it.

The original VPPC was extended using event-based con-
trol of the VPP position. With this approach, it is pos-
sible to achieve stable hopping in the whole investigated
parameter region, because stability is guarantied by the
controller design. This gives the freedom to select the value
of the model parameters, such as the leg stiffness, to reach
other objectives, including minimizing energy consumption
or satisfying constraints on the maximal torque. Two methods
to choose the linear feedback gains were presented. Both of
them resulted in considerable improvements regarding the
disturbance rejection (fast convergence to the steady state
after perturbation) and the robustness against perturbations.
In addition, the results were consistent with respect to
parameter changes. In the best cases, the controller was able
to reject very large perturbations, such as 8 m/s for the
horizontal speed and 90° for the trunk angle.

VPPC-DB is the simplest method but it suffers from
large overshoots of the trunk angle. This behavior would
be problematic in real robots where large movements of
the upper body are undesirable (if sensors are located in
the torso for example). VPPC-LQR is superior to VPPC-DB
regarding the transient behavior and the robustness against
trunk angle perturbation. It also offers the possibility to adjust
the controller behavior with the weight matrix W, in order
to prioritize disturbance rejection for a specific system state.
Regarding sensory information, the only cost for all these
benefits is to measure or estimate the system state at apex.

Event-based control also requires an accurate linear map of
the step-to-step behavior of the model, around a desired hop-
ping motion. If the system settles to another hopping motion,

the controller performance will deteriorate. This can happen
with this model, for which the hopping height is neutrally
stable. To solve this problem, we estimated the final hopping
height based on the system state and used this estimation to
derive the linear map. However, as perturbations can occur
at any step, an update of the linear map may potentially be
required at every apex event, with significant computational
cost. A simpler solution is to extend the model and add an
actuator along the leg axis. It would allow to use existing
energy-stabilization schemes to insure convergence towards
the desired hopping height.

Together with the issue of energy-management, we are
currently working on the extension of our approach to a
model including leg mass and damping. Preliminary results
are encouraging and indicates that the approach could be
implemented on a real robot.
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